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Avant propos

Evaluation par attendus d’apprentissages disciplinaires

Depuis I’année universitaire 2018-2019, la validation du cours « Algorithique avancée et programmation
C > utilise une évaluation par attendus d’apprentissages disciplinaires (AAD). Le référentiel des AAD est dispo-
nible sur le site Moodle de 'INSA Rouen Normandie : https://moodle.insa-rouen.fr/course/
view.php?id=60&section=0.

Les exercices de ce document vous permettent de travailler ces AAD.

Quelque soit I’exercice les AAD suivants sont évalués :

— ANOO1 : Désigner les choses (identifiant significatif)

— ANO02 : Etre précis quant aux types de données utilisés

— ANOO3 : Connaitre le role de I’analyse

— CPO0O01 : Comprendre le paradigme de programmation impératif

— CP002 : Comprendre le paradigme de programmation structuré

— CP006 : Comprendre le role de la conception préliminaire

— CDO004 : Ecrire des algos avec le pseudo code utilisé 2 I'INSA

— CDO0O05 : Ecrire un pseudo code lisible (indentation, identifiant significatif)
— CDO006 : Choisir la bonne itération

— CDO007 : Utiliser les bonnes catégories de parametres effectifs pour un passage de parametre donnée
— CDO009 : Ecrire un algorithme qui résout le probleme

— CDO10 : Connaitre le role de la conception détaillée

Le tableau ci dessous croise les exercices de ce livret avec les autres compétences :

Croisement AAD - exercices

] AAD ‘ Exercices
ANO004 : Comprendre et appliquer des consignes al- MIZI, IEHE'
gorithmiques sur un exemple
AN101 : Identifier les entrées et sorties d’un M H |4_¥|, |§|
probleme
AN102 : Décomposer logiquement un probleme 2.4[, |4|
AN103 : Généraliser un probleme 4
AN104 : Savoir si un probleme doit étre décomposé | [2.4
ANZ201 : Identifier les dépendances d’un TAD 6} 18|12
AN?203 : Savoir si une opération identifiée fait partie | (6 (8|12
du TAD a spécifier -
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AAD ‘ Exercices

AN204 : Formaliser des opérations d’un TAD 6 12|

AN205 : Formaliser les préconditions d’une | |68
opération d’un TAD

AN206 : Formaliser des axiomes ou savoir définir la |§|, |£|
sémantique d’une opération d’un TAD

AN301 : Lister les collections usuelles

CP003 : Choisir entre une fonction et une procédure | |1.3 4|, |5L |6|, |Eﬂ;|12J_

CP004 : Concevoir une signature (préconditions in- | [L.1][1.2]1.3[2.1[[2.2[2.3}[3.1}3.2}[3.3] 3.5 |4} 5} 6} [12]

cluses)

CPO0O05 : Choisir un passage de parametre (E, S, E/S) 2.2[, |5|, |6|, |12|

CDO001 : Dissocier les deux roles du développeur : | [6
concepteur et utilisateur

CDO002 : En tant qu’utilisateur, respecter une signa- | |1.1}[1.2]

ture

CDO003 : Utiliser le principe d’encapsulation 6 8|
CD101 : Estimer la taille d’un probleme (n) 14,14
CD102 : Calculer une complexité dans le pire et le | (1.4} 4 |Z|

meilleur des cas

CD104 : Ecrire un algorithme d’une complexité

donnée

CD201 : Identifier et résoudre le probleme des cas M |£|, H M H m, |§|, @I, |£|

non récursifs

CD202 : Identifier et résoudre le probleme des cas MM Mlﬁ“ﬁ“ﬂ@@“ﬂ

récursifs

CD203 : Identifier une récursivité terminale et non EHQI, Mlﬁ“ﬁl
terminale et ce que cela implique

CD301 : Identifier un probleme qui se résout a I'aide | [2.3|
d’un algorithme dichotomique

CD302 : Définir I’espace de recherche d’un algorith- M H
mique dichotomique

CD303 : Diviser et extraire les bornes de 1’espace de M H
recherche d’un algorithme dichotomique (cas discret
ou continu)

CD403 : Concevoir et utiliser des arbres (binaires, m
n-aires)

CD501 : Comprendre les algorithmes des différents |Z|
tris et leurs complexités

CD601 : Concevoir des collections a 1’aide de SDD 10

CD602 : Comprendre les algorithmes d’insertion et | (10
de suppression (naifs et AVL) dans un arbre binaire
de recherche

CD701 : Définir la programmation dynamique 13

CD702 : Appliquer la programmation dynamique | (13
pour des cas simples

CD801 : Concevoir des graphes (matrice d’adja- |£|
cence, matrice d’incidence, liste d’adjacence)
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] AAD ‘ Exercices

CD804 : Comprendre des algorithmes de recherche |£|
du plus court chemin : Dijkstra et A*
CD901 : Concevoir un type de données adapté a la |2|,|2|
situation en terme d’espace mémoire et d’efficacité

Pseudo code

Vous écrirez vos algorithmes avec le pseudo code utilisé dans la plupart des cours d’algorithmique de
I’INSA Rouen Normandie. Voici la syntaxe des instructions disponibles :

Type de données

Les types de base sont : Entier, Naturel, NaturelNonNul, Reel, ReelPositif, ReelPositifNonNul, Reel-
Negatif, ReelNegatifNonNul, Booleen, Caractere, Chaine de caracteres.
On définit un nouveau type de la fagon suivante :
Type Identifiant_nouveau_type = Identifiant_type_existant
On déclare un tableau de la facon suivante :

— Tableau a une dimension : Tableau[borne_de_début. . .borne_de_fin] de type_des_éléments

— Tableau a deux dimensions : Tableau[borne_de_début. . .borne_de_fin][borne_de_début. . .borne_de_fin] de
type_des_éléments

On définit une structure de la facon suivante :
Type Identifiant = Structure
identifiant_attribut_1 : Type_1

finstructure

Affectation

Le symbole d’affectation est «—.

Conditionnelles

Il y a trois instructions conditionnelles :

si condition alors si condition alors cas ou identifiant_variable vaut
instruction(s) instruction(s) valeur_I:

finsi sinon instruction(s)_1

instruction(s) .

finsi autre :
instruction(s)
fincas

Itérations

L’instruction de base pour les itérations déterministes est le pour :
pour identifiant <—borne_de_début a borne_de_fin faire
instruction(s)
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finpour
On peut itérer sur les éléments d’une liste, d’une liste ordonnée ou d’un ensemble grace a I’instruction pour
chaque :
pour chaque élément de collection
instruction(s)
finpour
Pour les itérations indéterministes nous avons deux instructions :

tant que condition faire repeter
instruction(s) instruction(s)
fintantque jusqu’a ce que condition

Sous-programmes

Les fonctions permettent de calculer un résultat (composé d’une ou plusieurs valeurs) de maniere déterministe :

fonction identifiant (parametre(s)_formel(s)) : Type(s) de retour
| précondition(s) expression(s) booléenne(s)
Déclaration variable(s) locale(s)

debut
instruction(s) avec au moins une fois I’instruction retourner
fin
Les procédures permettent de créer de nouvelles instructions :
procédure identifiant (parametre(s)_formel(s)_avec_passage_de_parametres)

| précondition(s) expression(s) booléenne(s)
Déclaration variable(s) locale(s)

debut
instruction(s)
fin
Les passages de parameétre sont : entrée (E), sortie (S) et entrée/sortie (E/S).



Chapitre 1

Rappels : chaine de caracteres, itérations,
conditionnelles

Pour certains de ces exercices on considere que 1’on posseéde les fonctions suivantes :
— fonction longueur (uneChaine : Chaine de caracteres) : Naturel
— fonction iemeCaractere (uneChaine : Chaine de caracteres, iemePlace : Naturel) : Caractere

| précondition(s) 0 < iemePlace et iemePlace < longueur(uneChaine)

1.1 estUnPrefixe

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)
— CDO002 : En tant qu’utilisateur, respecter une signature

— CDO006 : Choisir la bonne itération

Proposez la fonction estUnPrefixe qui permet de savoir si une premiere chaine de caracteres est préfixe
d’une deuxieme chalne de caracteres (par exemple < pré > est un préfixe de « prédire > et de < pré ).

Correction proposée:
fonction estUnPrefixe (IePrefixePotentiel,uneChaine : Chaine de caracteres) : Booleen

Déclaration i: NaturelNonNul
resultat : Booleen

debut
si longueur(lePrefixePotentiel) >longueur(uneChaine) alors
retourner FAUX
sinon
i1
resultat <~ VRAI
tant que resultat et i<longueur(lePrefixePotentiel) faire
si iemeCaractere(uneChaine,i)=iemeCaractere(lePrefixePotentiel,i) alors
i+ i+l
sinon
resultat < FAUX
finsi
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fintantque
retourner resultat
finsi
fin

1.2 Palindrome

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)
— CDO002 : En tant qu’utilisateur, respecter une signature
— CDO006 : Choisir la bonne itération

Une chaine de caracteres est un palindrome si la lecture de gauche a droite et de droite a gauche est iden-
99 €6 Ly 299 13

tique. Par exemple “radar”, “été”, “rotor”, etc. La chaine de caracteres vide est considérée comme étant un
palindrome

Ecrire une fonction qui permet de savoir si une chaine est un palindrome.

Correction proposée:

fonction estUnPalindrome (ch : Chaine de caracteres) : Booleen

Déclaration g,d : NaturelNonNul
resultat : Booleen

debut
si longueur(ch)=0 alors
retourner VRAI
sinon
resultat < VRAI
g+ 1
d < longueur(ch)
tant que resultat et g<d faire
si iemeCaractere(ch,g) = iemeCaractere(ch,d) alors
g+ g+l
d<«+d-1
sinon
resultat < FAUX
finsi
fintantque
retourner resultat
finsi
fin
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1.3 Position d’une sous-chaine

Attendus d’apprentissages disciplinaires évalués

— ANI1O01 : Identifier les entrées et sorties d’un probleme
— CP003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

J

Soit I’analyse descendante présentée par la figure[T.1] qui permet de rechercher la position d’une chaine de
caracteres dans une autre chaine indépendemment de la casse (d’ ot le suffixe IC aI’opération positionSousChaineIC),
c’est-a-dire que 1’on ne fait pas de distinction entre majuscule et minuscule.

47 positionSousChainelC F——>

’——T‘ sousChaine }—»
‘——T‘ longueur }—»

i
47‘ iemeCaractere }—»

FIGURE 1.1 — Une analyse descendante

minuscule

——» sontEgalesIC }—»

Pour résoudre ce probleme il faut pouvoir :
— obtenir la longueur d’une chaine de caracteres;;

— obtenir la sous-chaine d’une chaine en précisant 1’indice de départ de cette sous-chaine et sa longueur (le
premier caractere d’une sous-chaine a I’indice 1);

— savoir si deux chaines de caractéres sont égales indépendemment de la casse.

L’opération positionSousChaineIC retournera la premiere position de la chaine recherchée dans la
chaine si cette premiére est présente, 0 sinon.
Par exemple :

— positionSousChaineIC ("AbCdEfGh", "cDE") retournera la valeur 3;
— positionSousChaineIC ("AbCdEfGh", "abc") retournera la valeur 1;

— positionSousChaineIC ("AbCdEfGh", "xyz") retournera la valeur 0.

1. Complétez I’analyse descendante en précisant les types de données en entrée et en sortie.

2. Donnez les signatures completes (avec préconditions si nécessaire) des sous-programmes (fonctions ou
procédures) correspondant aux opérations de 1’analyse descendante.

3. Donnez I’algorithme du sous-programme correspondant a I’opération positionSousChaineIC et
sousChaine

Correction proposée:
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Chalne ce caractc\aresﬁ, positionSousChainelC —» Naturel
Chaine de caracteres

Chaine de caracteres haine de caractéres

NatureINonNul —— sousChaine —— Chaine de caractéres Chaine de caractéeres > SOntEgalesiC | ——» Booléen
Naturel H
Chaine de caracteres—» longueur ——» Naturel
Y
Chaine de caractéres Caractére —»  minuscule ~ ——» Caractére

> —
NaturelNonNul iemeCaractere Caractere

Note : minuscule est sur les caracteres et non chalne de caracteres sinon il y aurait une autre sous boite. . .
fonction positionSousChainelC (chaine, chaineARechercher : Chaine de caracteres) : Naturel

| précondition(s) longueur(chaineARechercher)>0
longueur(chaineARechercher)<longueur(chaine)

fonction longueur (chaine : Chaine de caracteres) : Naturel
fonction sousChaine (chaine : Chaine de caracteres, pos : NaturelNonNul, long : Naturel) : Chaine de
caracteres

| précondition(s) long<longueur(chaine)-position+1

fonction sontEgalesIC (chainel, chaine2 : Chaine de caracteres) : Booleen
fonction minuscule (c : Caractere) : Caractere

fonction positionSousChainelC (chaine, chaineARechercher : Chaine de caracteres) : Naturel

| précondition(s) longueur(chaineARechercher)>0
longueur(chaineARechercher)<longueur(chaine)

Déclaration i: Naturel

debut
11
tant que i+longueur(chaineARechercher)-1<longueur(chaine) et non sontEgalesIC(sousChaine(chaine,i,
longueur(chaineARechercher)),chaineARechercher) faire
14 i+l
fintantque
si i+longueur(chaineARechercher)>longueur(chaine)+1 alors
i< 0
finsi
retourner i
fin
fonction sousChaine (chaine : Chaine de caracteres, pos : NaturelNonNul, long : Naturel) : Chaine de
caracteres

| précondition(s) long<longueur(chaine)-pos+1
Déclaration resultat : Chaine de caracteres, i : Naturel

debut
resultat <
pour i <0 a long-1 faire
resultat < resultat + iemeCaractere(chaine,pos+i)

9999
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finpour

retourner resultat
fin

1.4 Racine carrée d’un nombre : recherche par dichotomie

Attendus d’apprentissages disciplinaires évalués

— CD302 : Définir I’espace de recherche d’un algorithmique dichotomique

— CD303 : Diviser et extraire les bornes de I’espace de recherche d’un algorithme dichotomique
(cas discret ou continu)

— CD101 : Estimer la taille d’un probleme (n)

— CD102 : Calculer une complexité dans le pire et le meilleur des cas

L’ objectif de cet exercice est de rechercher une valeur approchée de la racine carrée d’un nombre réel positif
x (x > 1) a e pres a 'aide d’un algorithme dichotomique.
Pour rappel :

< La dichotomie (“couper en deux” en grec) est, en algorithmique, un processus itératif [..]
de recherche ou, a chaque étape, on coupe en deux parties (pas forcément égales) un espace de
recherche qui devient restreint a I’'une de ces deux parties.

On suppose bien slir qu’il existe un test relativement simple permettant a chaque étape de
déterminer 1’'une des deux parties dans laquelle se trouve une solution. Pour optimiser le nombre
d’itérations nécessaires, on s’arrangera pour choisir a chaque étape deux parties sensiblement de
la méme “taille” (pour un concept de “taille” approprié au probléme), le nombre total d’itérations
nécessaires a la complétion de 1’algorithme étant alors logarithmique en la taille totale du probléme
initial. > (wikipédia).

Définir « I’espace de recherche > pour le probleme de la recherche d’une racine carrée.
Quelle condition booléenne permet de savoir si il doit y avoir une nouvelle itération ?

Quel test va vous permettre de savoir dans laquelle des deux parties se trouve la solution ?

Sl N

Proposez 1’algorithme de la fonction suivante (on suppose que x et epsilon sont positifs et que = est
supérieur ou égal a 1) :

— fonction racineCarree (x,epsilon : ReelPositif) : ReelPositif

5. Quelle est la complexité de votre algorithme ?

Correction proposée:

1. La taille de I’espace de recherche est : (d — g)/e.
2. d—g>e€

3. m? plus petit ou plus grand que

4.

fonction racineCarree (x,e : ReelPositif) : ReelPositif
Déclaration g,d,m : ReelPositif

debut
g+ 0
d+x
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tant que d-g> ¢ faire
m ¢ (g+d)/2
si m*m<x alors
g+ m
sinon
d<+ m
finsi
fintantque
retourner g
fin

: CHAINE DE CARACTERES, ITERATIONS, CONDITIONNELLES

5. La taille du probléme est définie par la valeur (d — g)/e. Le nombre d’itérations est donc de loga((d —

g9)/e).

La représentation des flottants utilise un nombre fixe de bits (souvent la norme IEEE 754), Il y a donc
une borne MAX. De plus chaque opération sur les flottants (comparaison, multiplication, division par 2)
est dans ce cas supposée en temps constant, cet algorithme est O(log2((d — g)/€).



Chapitre 2

Rappels : les tableaux

Dans certains exercices qui vont suivre, le tableau d’entiers ¢ est défini par [1..MAX] et il contient n
éléments significatifs (n < MAX).

2.1 Plus petit élément

Attendus d’apprentissages disciplinaires évalués

— CPO004 : Concevoir une signature (préconditions incluses)

Ecrire une fonction, minTableau, qui a partir d’un tableau d’entiers ¢ non trié de n éléments significatifs
retourne le plus petit élément du tableau.

Correction proposée:

fonction minTableau (t : Tableau[1.. MAX] d’Entier, n : NaturelNonNul) : Entier

| précondition(s) n<MAX

Déclaration 1i: Naturel,
min : Entier

debut
min < t[1]
pour i <2 a n faire
si t[i]<min alors
min < t[i]
finsi
finpour
retourner min
fin
15
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2.2 Sous-séquences croissantes

Attendus d’apprentissages disciplinaires évalués

— CPO003 : Choisir entre une fonction et une procédure
— CP004 : Concevoir une signature (préconditions incluses)

— CPO0O05 : Choisir un passage de parametre (E, S, E/S)

— CDO0O05 : Ecrire un pseudo code lisible (indentation, identifiant significatif)

Ecrire un sous-programme sousSequencesCroissantes, qui & partir d’un tableau d’entiers ¢ de n
éléments, fournit le nombre de sous-séquences strictement croissantes de ce tableau, ainsi que les indices de
début et de fin de la plus grande sous-séquence. Exemple : ¢ un tableau de 15 éléments : 1,2,5,3,12,25,13
,8,4,7,24,28,32,11, 14. Les séquences strictement croissantes sont : < 1,2,5 >, < 3,12,25 >, < 13 >, <
8 >,<4,7,24,28,32 >, < 11,14 >. Le nombre de sous-séquences est : 6 et la plus grande sous-séquence
est: < 4,7,24,28,32 >. Donc dans ce cas les trois valeurs calculées seraient 6, 9 et 13.

Correction proposée:

fonction sousSequencesCroissantes (t :Tableau[1..MAX] d’Entier, n : NaturelNonNul) : NaturelNonNul,
NaturelNonNul, NaturelNonNul

| précondition(s) n<MAX

Déclaration i :Naturel
debutSequenceCourante, nbSsSequences, debutDeLaPlusGrandeSsSequence, finDeL.aPlusGran-
deSsSequence : NaturelNonNul

debut
si n>1 alors
nbSsSequences +— 1
debutDeLaPlusGrandeSsSequence < 1
finDeLaPlusGrandeSsSequence < 1
debutSequenceCourante < 1
pour i <1 an-1 faire
si t[i]>t[i+1] alors
nbSsSequences <— nbSsSequences+1
si i-debutSequenceCourante>finDeLaPlusGrandeSsSequence-debutDeLaPlusGrandeSsSequence
alors
debutDeLaPlusGrandeSsSequence <— debutSequenceCourante
finDeLaPlusGrandeSsSequence + i
finsi
debutSequenceCourante <— i+1
finsi
finpour
si n-debutSequenceCourante >finDeLaPlusGrandeSsSequence-debutDeLaPlusGrandeSsSequence alors

debutDeLaPlusGrandeSsSequence <— debutSequenceCourante
finDeLaPlusGrandeSsSequence < n
finsi
retourner nbSsSequences, debutDelLaPlusGrandeSsSequence, finDel.aPlusGrandeSsSequence
sinon
retourner 1,1,1
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finsi
fin

2.3 Recherche d’un élément en O(log(n))

Attendus d’apprentissages disciplinaires évalués

— CPO004 : Concevoir une signature (préconditions incluses)

— CD104 : Ecrire un algorithme d’une complexité donnée

— CD301 : Identifier un probleme qui se résout a I’aide d’un algorithme dichotomique
— CD302 : Définir I’espace de recherche d’un algorithmique dichotomique

— CD303 : Diviser et extraire les bornes de I’espace de recherche d’un algorithme dichotomique
(cas discret ou continu)

\. J

Ecrire une fonction, recherche, qui détermine le plus petit indice d’un élément, (dont on est sir de
I’existence) dans un tableau d’entiers ¢ trié dans 1’ordre croissant de n éléments en O(log(n)). Il peut y avoir
des doubles (ou plus) dans le tableau.

Correction proposée:

fonction recherche (t : Tableau[1.. MAX] d’Entier, n : NaturelNonNul, element : Entier) : NaturelNonNul

| précondition(s) n<MAX
31 <i < ntel que t[i] = element
estTrieEnOrdreCroissant(t)

Déclaration g,d,m : Naturel

debut
g1
d<n
tant que g ~ d faire
m <+ (g+d)div2
si tfm] > element alors
d< m
sinon
g+ m+1
finsi
fintantque
retourner d
fin

Quelques remarques sur les algorithmes dichotomiques sur du discret :
— On sort du tant quand les deux indices se croisent

— 1l faut savoir quand < garder > I’élément du milieu (et donc quand I’exclure, sinon il y a un risque de
boucle infinie). Ici, comme on cherche le plus petit indice de 1’élément recherché, lorsque t[m] est cet
élément, il faut le garder (c’est peut étre lui qui est recherché).
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2.4 Lissage de courbe

Attendus d’apprentissages disciplinaires évalués

— ANIO01 : Identifier les entrées et sorties d’un probleme

— ANI102 : Décomposer logiquement un probléme

— ANI104 : Savoir si un probléeme doit étre décomposé

J

L’ objectif de cet exercice est de développer un « filtre non causal >, c’est-a-dire une fonction qui lisse
un signal en utilisant une fenétre glissante pour moyenner les valeurs (Cf. figure [2.1). Pour les premieres et
dernigres valeurs, seules les valeurs dans la fenétre sont prises en compte.

| [2/1]4]5]3]6]|3]7] 2]1]a]5]3]6]3]7] 2]1)4]5]3]e]3]7] |
v v v
is] | ] ] 1502333 4 [a7] | | | 1.52.3]3.3) 4 [4.7] 4 |53 5 |

FIGURE 2.1 — Lissage d’un signal avec une fenétre de taille 3

Soit le type Signal :
Type Signal = Structure

donnees : Tableau[1.. MAX] de Reel

nbDonnees : Naturel
finstructure

Apres avoir fait une analyse descendante du probleme, proposez I’algorithme de la fonction £i1t reNonCausal
avec la signature suivante :

— fonction filtreNonCausal (signalNonLisse : Signal, tailleFenetre : NaturelNonNul) : Signal

| précondition(s) impair(tailleFenetre)

Correction proposée:
Analyse descencante :
— filtreNonCausal : Signal x Naturel -» Signal
— mun : Naturel x Entier — Entier
— max : Naturel x Entier — Entier
— moyenne : Signal x Naturel x Naturel -~ Reel
— somme : Signal x Naturel x Naturel - Reel
Algorithmes :
fonction somme (unSignal : Signal, debut, fin : NaturelNonNul) : Reel
| précondition(s) debut< fin

fin< unSignal.nbDonnees
unSignal.nbDonnees< MAX

Déclaration resultat : Reel
1 : Naturel



2.4. LISSAGE DE COURBE 19

debut
resultat <— 0
pour i <—debut a fin faire
resultat < resultat+ unSignal.donnes]i]
finpour
retourner resultat
fin
fonction moyenne (unSignal : Signal, debut, fin : NaturelNonNul) : Reel

| précondition(s) debut< fin
fin< unSignal.nbDonnees
unSignal.nbDonnees< MAX

debut
retourner somme(unSignal,debut,fin)/(fin-debut+1)
fin
fonction filtreNonCausal (unSignal : Signal, tailleFenetre : NaturelNonNul) : Signal

| précondition(s) impaire(tailleFenetre)
unSignal.nbDonnees< MAX

Déclaration resultat : Signal
1 : Naturel

debut
resultat.nbDonnees <— unSignal.nbDonnees
pour i <1 a resultat.nbDonnees faire
resultat.donnes[i] +— moyenne(unSignal,entierEnNaturel(max(1,i-tailleFenetre div 2)),
entierEnNaturel(min(unSignal.nbDonnees,i+tailleFenetre div 2)))
finpour
retourner resultat
fin
Il est noté qu’il faut explicitement utiliser la fonction de transtypage entierEnNaturel qui possede la
signature suivante :

— fonction entierEnNaturel (e : Entier) : Naturel

| précondition(s) >0



20

CHAPITRE 2. RAPPELS : LES TABLEAUX



Chapitre 3

Rappels : récursivité

3.1 Palindrome

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)
— CD201 : Identifier et résoudre le probleme des cas non récursifs
— CD202 : Identifier et résoudre le probleme des cas récursifs

— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

. J

Ecrire une fonction qui permet de savoir si une chalne est un palindrome. Est-ce un algorithme récursif
terminal ou non-terminal ?

Correction proposée:

fonction estUnPalindrome (uneChaine : Chaine de caracteres) : Booleen
debut
si longueur(uneChaine)=0 ou longueur(uneChaine)=1 alors
retourner VRAI
sinon
si iemeCaractere(uneChaine, 1 )#iemeCaractere(uneChaine,longueur(uneChaine)) alors
retourner FAUX
sinon
retourner estUnPalindrome(sousChaine(uneChaine,2,longueur(uneChaine)-2))
finsi
finsi
fin

Le probléme est que c’est algorithme est en O(n?). Pour obtenir un algorithme en O(n), il faut utiliser une
fonction privée prenant en parametre le chaine et les indices :
fonction estUnPalindrome (uneChaine : Chaine de caracteres) : Booleen
debut

retourner estUnPalindromeR (uneChaine, 1,longueur(uneChaine)-1)
fin
fonction estUnPalindromeR (uneChaine : Chaine de caracteres, debut, fin : NaturelNonNul) : Booleen
debut

si fin<debut alors

retourner VRAI
21
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sinon
si iemeCaractere(uneChaine,debut)#iemeCaractere(uneChaine,fin) alors
retourner FAUX
sinon
retourner estUnPalindromeR (sousChaine(uneChaine,debut+1,fin-1))
finsi
finsi
fin

Il est noté que ces deux algorithmes sont des algorithmes récursif terminal.

3.2 Puissance d’un nombre

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)

— CDI104 : Ecrire un algorithme d’une complexité donnée

— CD201 : Identifier et résoudre le probleme des cas non récursifs
— CD202 : Identifier et résoudre le probleme des cas récursifs

— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

Ecrire une fonction récursive, puissance, qui éléve un réel a a la puissance nb (naturel) en Q(n).
Correction proposée:

fonction puissance (a : Reel, nb : Naturel) : Reel
Déclaration temp : Reel

debut
si nb = 0 alors
retourner 1
sinon
si estPair(nb) alors
temp < puissance(a,nb div 2)
retourner temp*temp
sinon
retourner a*puissance(a,nb-1)
finsi
finsi
fin

Pour rappel, la taille du probleme n ici est le nombre de bits qu’il faut pour représenter nb. Donc nb vaut
au maximum 2". Dans le meilleur des cas 1’algorithme divise nb par 2, le nombre d’itérations dans le meilleur
des cas est donc de loga(nb) et donc la complexité de cet algorithme est en D (n * loga(n)).

Il est noté que cet algorithme n’est pas une récursivité terminale.
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3.3 Recherche du zéro d’une fonction en O(n)

23

Attendus d’apprentissages disciplinaires évalués

CP004 : Concevoir une signature (préconditions incluses)
CD104 : Ecrire un algorithme d’une complexité donnée

CD201 : Identifier et résoudre le probleme des cas non récursifs
CD202 : Identifier et résoudre le probleme des cas récursifs

CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

Ecrire une fonction récursive, zeroFonction, qui calcule le zéro d’une fonction réelle f(x) sur I’inter-

valle réel [a, b], avec une précision e. La fonction f est strictement monotone sur [a, b].

Correction proposée:

fonction zeroFonction (a,b : Reel, ¢ : ReelPositif, f : FonctionRDansR) : Reel

| précondition(s) a <b

strictementMonotone(f,a,b)

Déclaration m : Reel

debut

m< (a+b)/2
si (b - a)< ¢ alors
retourner m

sinon

si memeSigne(f(a),f(m)) alors

retourner zeroFonction(m, b, ¢,f)

sinon

retourner zeroFonction(a, m, ¢,f)

finsi

finsi
fin

La taille du probleme est égal aux nombre de bits qu’il faut pour représenter ce (b — a)/e. Si on arrondit
ce nombre au naturel le plus proche N, et si n représente le nombre de bits pour représenter /N, N vaut au
maximum 2" — 1. Comme le nombre d’itérations est de logo (V) (algorithmique dichotomique), la complexité

de cet algorithme est en O(n) et en £2(1) (dans le cas ou il n’y aucune itération).

3.4 Dessin récursif

Attendus d’apprentissages disciplinaires évalués

ANO004 : Comprendre et appliquer des consignes algorithmiques sur un exemple
CD201 : Identifier et résoudre le probleme des cas non récursifs
CD202 : Identifier et résoudre le probleme des cas récursifs

CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

Supposons que la procédure suivante permette de dessiner un carré sur un graphique (variable de type
Graphique):
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— procédure carre (E/S g : Graphique,E x,y,cote : Reel)

L’objectif est de concevoir une procédure carres qui permet de dessiner sur un graphique des dessins
récursifs tels que présentés par la figure [3.1] La signature de cette procédure est :

— procédure carres (E/S g : Graphique,E x,y,cote : Reel, n : NaturelNonNul)

200) :LFI
250 j 250 O . [l
180| J I_FLH E‘\:|—’ j—|:|
200 ’7 j 200 [ [ [
\_ J [ ] [H] d
160 :|_|:| I_l:Lj
150 j J ’_ L 150 O | [ T = H|
E‘EI—’ ELE
140 ]
100| ’_ j 100 |_|::: M1 H N — 1
O TPy
120 ’_ 2 M
50 \_ 50 . 0
100 ELE
100 120 140 160 180 200 50 100 150 200 250 300 50 100 150 200 250 300

(a) carres(g, 100,100,100, 1) (b) carres(g, 100,100, 100, 3) (c) carres(g, 100,100,100, 4)

FIGURE 3.1 — Résultats de différents appels de la procédure carres

1. Dessinez le résultat de 1’exécution de carres(g, 100, 100, 100, 2).

2. Donnez I’algorithme de la procédure carres.

Correction proposée:

]

150 ’7
oo}

50 760

1.

2. Algorithme

procédure carres (E/S g : Graphique,E x,y,cote : Reel, n : NaturelNonNul)
debut
carre(g,x,y,cote)
si n>1 alors
carres(g,x-cote/2,y,cote/2,n-1)
carres(g,x,y+cote,cote/2,n-1)
carres(g,x+cote,y+cote/2,cote/2,n-1)
carres(g,x+cote/2,y-cote/2,cote/2,n-1)
finsi
fin

NB : Cet exercice estinspiré de http: //www—fourier.ujf-grenoble.fr/~parisse/giac/doc/
fr/casrouge/casrouge018.html.


http://www-fourier.ujf-grenoble.fr/~parisse/giac/doc/fr/casrouge/casrouge018.html
http://www-fourier.ujf-grenoble.fr/~parisse/giac/doc/fr/casrouge/casrouge018.html

3.5. INVERSION D’UN TABLEAU 25

3.5 Inversion d’un tableau

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)
— CD201 : Identifier et résoudre le probleme des cas non récursifs
— CD202 : Identifier et résoudre le probleme des cas récursifs

— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

Soit un tableau d’entiers ¢. Ecrire une procédure, inverserTableau, qui change de place les éléments
de ce tableau de telle facon que le nouveau tableau ¢ soit une sorte de “miroir” de 1’ancien.
Exemple: 1246 -6421

Correction proposée:
procédure inverserTableauR (E/S t : Tableau[1..MAX] d’Entier, E debut, fin : Naturel)
debut
si debut < fin alors
echanger(t[debut], t[fin])
si debut<fin-1 alors
inverserTableauR(t, debut+1, fin-1)
finsi
finsi
fin
procédure inverserTableau (E/S t : Tableau[1..MAX] d’Entier, E n : Naturel)
debut
inverserTableauR(t,1,n)
fin
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Chapitre 4

Représentation d’un naturel

Attendus d’apprentissages disciplinaires évalués

— ANI101 : Identifier les entrées et sorties d’un probleme

— ANI102 : Décomposer logiquement un probleme

— ANI103 : Généraliser un probleme

— ANI104 : Savoir si un probleme doit étre décomposé

— CP003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

— CDO001 : Dissocier les deux roles du développeur : concepteur et utilisateur

— CDO002 : En tant qu’utilisateur, respecter une signature

L’ objectif de cet exercice est de concevoir quatre fonctions permettant de représenter un naturel en chaine
de caracteres telles que la premiere fonction donnera une représentation binaire, la deuxiéme une représentation
octale, la troisieme une représentation décimale et la derniere une représentation hexadécimale.

4.1 Analyse

L’analyse de ce probleme nous indique que ces quatre fonctions sont des cas particuliers de représentation
d’un naturel en chaine de caracteéres dans une base donnée. De plus pour construire la chaine de caracteres
résultat, il faut étre capable de concaténer des caracteres représentant des chiffres pour une base donnée.

Proposez 1’analyse descendante de ce probleme.

Correction proposée:
27
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representation
Binaire

representation

. - i
Decimale Chaine

— Chaine Naturel —»

Naturel —

representation

representation
Octale

Hexadecimale

Nature| — —* Chaine Naturel — — Chaine

representation .
2Naélérel —> NAire — Chaine
naturel
(Z)gg EnChifre |~ ™ Caractere

4.2 Conception préliminaire

Donnez les signatures des fonctions ou procédures identifiées précédemment.

Correction proposée:

— fonction naturelEnChiffre (nombre : 0..35, base : 2..36) : Caractere
| précondition(s) nombre < base
— fonction representationNAire (nombre : Naturel, base : 2..36) : Chaine de caracteres
— fonction representationBinaire (n : Naturel) : Chaine de caracteres
— fonction representationOctale (n : Naturel) : Chaine de caracteres
— fonction representationDecimale (n : Naturel) : Chaine de caracteres

— fonction representationHexadecimale (n : Naturel) : Chaine de caracteres

4.3 Conception détaillée

Donnez les algorithmes de ces fonctions ou procédures

Correction proposée:
fonction naturelEnChiffre (nombre : 0..35, base : 2..36) : Caractere

| précondition(s) nombre < base

Déclaration chiffre : Caractere,
1 : Naturel

debut
chiffre <0’
pour i <1 a nombre faire
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si chiffre =9’ alors
chiffre + °A’
sinon
chiffre < succ(chiffre)
finsi
finpour
retourner chiffre
fin

fonction representationNAire (nombre : Naturel, base : 2..36) : Chaine de caracteres
Déclaration representation : Chaine de caracteres

debut
representation <—
repeter
representation <— naturelEnChiffre(nombre mod base, base) + representation
nombre <— nombre div base
jusqu’a ce que nombre =0
retourner representation
fin

9999

fonction representationBinaire (n : Naturel) : Chaine de caracteres
debut

retourner representationNAire(n,2)
fin

fonction representationOctale (n : Naturel) : Chaine de caracteres
debut

retourner representationNAire(n,8)
fin

fonction representationDecimale (n : Naturel) : Chaine de caracteres
debut

retourner representationNAire(n,10)
fin

fonction representationHexadecimale (n : Naturel) : Chaine de caracteres
debut

retourner representationNAire(n,16)
fin
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Chapitre 5

Calculatrice

Attendus d’apprentissages disciplinaires évalués

— ANI101 : Identifier les entrées et sorties d’un probleme
— CPO003 : Choisir entre une fonction et une procédure
— CP004 : Concevoir une signature (préconditions incluses)

— CPO0O05 : Choisir un passage de parametre (E, S, E/S)

. J

L’ objectif de cet exercice est d’écrire un sous-programme, calculer, qui permet de calculer la valeur d’une
une expression arithmétique simple (opérande gauche positive, opérateur, opérande droite positive) a partir
d’une chaine de caracteres (par exemple "875+47.5”). Ce sous-programme, outre ce résultat, permettra de savoir
si la chalne est réellement une expression arithmétique (Conseil : Créer des procédures/fonctions permettant de
reconnaitre des opérandes et opérateurs) et si elle est logiquement valide

On considere posséder le type Operateur défini de la facon suivante :

— Type Operateur = { Addition, Soustraction, Multiplication, Division}

5.1 Analyse

Remplissez I’analyse descendante présentée par la figure sachant que la reconnaissance d’une entité
(opérateur, opérande, etc.) dans la chaine de caractéres commencent a une certaine position et que la reconnais-
sance peut échouer.

— calculer —» "

_, econnaitre
Operateur

reconnaitre
Operande

reconnaitreS

uiteChiffres .
—» xPuissanceN —» -

reconnaitre -
Y > — -
J Virugle chaineEnNaturel

— estUnChiffre —» ...

FIGURE 5.1 — Analyse descendante d’une calculatrice simple
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Correction proposée:

Notes, remarques pour I’enseignant et points a vérifier

— La difficulté ici est d’avoir une analyse cohérente du probleme

) lcul Reel
Chaine calculer Booléen
Booléen

Chaine reconnaitre Operateur
NaturelNonNul Operateur NaturelNonNul

Booleen

Chaine J reconnaitre Reel
NaturelNonNul ‘ Operande NaturelNonNul
Booleen

hai reconnaitre Chaine
Chaine SuiteChiffre NaturelNonNul
NaturelNonNul Booleen

Reel _, ; ‘ Reel
xPuissanceN
Entier uissance

reconnaitre NaturelNonNul

- [ chai \
i —7 Naturel
Virugle Booleen Chaine chaineEnNaturel F' Bgtt)lfe(;n

Chaine
NaturelNonNul

Caractere—% estUnChiffre L» Booleen

5.2 Conception préliminaire

Donnez les signatures des fonctions ou procédures correspondant aux opérations de I’analyse précédente.

Correction proposée:

— fonction calculer (IeTexte : Chaine de caracteres) : Reel, Booleen, Booleen
| précondition(s) longueur(leTexte) > 0

— procédure reconnaitreOperateur (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul, S
estUnOperateur : Booleen, 10perateur : Operateur)

| précondition(s) debut < longueur(leTexte)

— procédure reconnaitreOperande (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul, S
estUneOperande : Booleen, leReel : Reel)

| précondition(s) debut < longueur(leTexte)

— procédure reconnaitreSuiteChiffres (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul,
S suiteChiffres : Chaine de caracteres, estUneSuiteDeChiffres : Booleen)

| précondition(s) position < longueur(leTexte)

— procédure reconnaitreVirgule (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul, S
estUneVirgule : Booleen)

| précondition(s) position < longueur(leTexte)
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— fonction estUnChiffre (c : Caractere) : Booleen
— fonction XPuissanceN (x : Reel, n : Entier) : Reel

— fonction chaineEnNaturel (c : Chaine de caracteres) : Naturel, Booleen

5.3 Conception détaillée

Donnez les algorithmes des fonctions et procédures identifées.

Correction proposée:

Notes, remarques pour I’enseignant et points a vérifier

— Montrer qu’une fois la conception préliminaire terminée, on peut répartir la conception détaillée
entre plusieurs personnes

procédure reconnaitreOperateur (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul, S estU-
nOperateur : Booleen, |Operateur : Operateur, )

| précondition(s) debut < longueur(leTexte)

debut
estUnOperateur <— VRAI
position <— position+1
cas ou iemeCaractere(leTexte,position) vaut

>,

+
10perateur < Addition
I0perateur <— Soustraction
10perateur <— Multiplication
A
10perateur <— Division
autre :
estUnOperateur <— FAUX
position ¢— position-1
fincas
fin

fonction estUnChiffre (c : Caractere) : Booleen
debut

retourner c>’0’ et c<’9’
fin

procédure reconnaitreSuiteChiffres (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul, S sui-
teChiffres : Chaine de caracteres, estUneSuiteDeChiffres : Booleen)

| précondition(s) position < longueur(leTexte)

debut
suiteChiffres +—
estUneSuiteDeChiffres <— FAUX
tant que position < longueur(texte) et estUnChiffre(iemeCaractere (leTexte, position)) faire

9999
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suiteChiffres <— suiteChiffres + iemeCaractere (leTexte, position)
position <— position + 1
fintantque
si suiteChiffres#"" alors
estUneSuiteDeChiffres < VRAI
finsi
fin

procédure reconnaitreOperande (E leTexte : Chaine de caracteres, E/S position : Naturel, S estUneOpe-
rande : Booleen, leReel : Reel, prochainDebut : NatureINonNul)

| précondition(s) debut < longueur(leTexte)

Déclaration chPartieEntiere, chPartieDecimale : Chaine de caracteres
partieEntiere, partieDecimale : Naturel
ok, ilYAUneVirgule : Booleen

debut
reconnaitreSuiteChiffres(leTexte,position,chPartieEntiere,ok)
si ok alors
chaineEnNaturel(chPartieEntiere,partieEntiere,0k)
reconnaitreVirgule(leTexte,position,il YAUne Virgule)
si ilYAUneVirgule alors
reconnaitreSuiteChiffres(leTexte,position,chPartieDecimale,ok)
si ok alors
chaineEnNaturel(chPartieDecimale,partieDecimale,ok)
leReel < partieEntiere + partieDecimale / XPuissanceN(10,longueur(chPartieDecimale))
finsi
sinon
leReel +— naturelEnReel(partieEntiere)
finsi
finsi
estUneOperande < ok
fin

fonction calculer (leTexte : Chaine de caracteres) : Reel, Booleen, Booleen
| précondition(s) longueur(leTexte) > 0

Déclaration i: Naturel
valeur, operandeG, operandeD : Reel
operateur : Operateur
toujoursValide, estUneExpressionSemantiquementCorrecte : Booleen

debut
valeur +- 0
i1
reconnaitreOperande(leTexte,i, toujoursValide, operandeG)
si toujoursValide et i<longueur(leTexte) alors
reconnaitreOperateur(leTexte, i, toujoursValide, operateur)
si toujoursValide et i< longueur(leTexte) alors
reconnaitreOperande(leTexte, i, toujoursValide, operandeD)
si toujoursValide et i = longueur(leTexte) + 1 alors
estUneExpressionSemantiquementCorrecte <— VRAI
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cas ou operateur vaut
Addition:
valeur < operandeG + operandeD
Soustraction:
valeur <— operandeG - operandeD
Multiplication:
valeur +— operandeG * operandeD
Division:
si operandeD # 0 alors
valeur <— operandeG / operandeD
sinon
estUneExpressionSemantiquementCorrecte <— FAUX
finsi
fincas
retourner valeur, VRAI, estUneExpressionSemantiquementCorrecte
finsi
finsi
finsi
retourner 0, FAUX, FAUX
fin
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Chapitre

Un peu

6

de géométrie

Correction proposée:

Notes, remarques pour I’enseignant et points a vérifier

— Manipuler les TAD

— Appliquer le principe d’encapsulation

Attendus d’apprentissages disciplinaires évalués

— AN201 :
— AN203:
— AN204:
— AN205:
— AN206:
— CP003 :
— CP004 :
— CP005 :
— CDO003 :

Identifier les dépendances d’un TAD

Savoir si une opération identifiée fait partie du TAD a spécifier

Formaliser des opérations d’'un TAD

Formaliser les préconditions d’une opération d’un TAD

Formaliser des axiomes ou savoir définir la sémantique d’une opération d’un TAD
Choisir entre une fonction et une procédure

Concevoir une signature (préconditions incluses)

Choisir un passage de parametre (E, S, E/S)

Utiliser le principe d’encapsulation

6.1 Le TAD Point2D

Soit le TAD Point 2D définit de la facon suivante :

Nom:
Utilise:
Opérations:

Point2D

Reel

point2D: Reel x Reel — Point2D

obtenirX: Point2D — Reel

obtenirY: Point2D — Reel

distanceEuclidienne: Point2D x Point2D — ReelPositif
translater: Point2D x Point2D — Point2D

faireRotation: Point2D x Point2D x Reel — Point2D
37
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1. Analyse : Donnez la partie axiomes pour ce TAD (sauf pour I’opération faireRotation)
Correction proposée:

Axiomes: - obtenirX (point2D(x,y)) = x
- obtenirY (point2D(x,y)) =y
- distance Euclidienne(point2D(x1, y1), point2D(x2, y2)) = \/(xg —21)%+ (y2 — y1)?
- translater(point2D(x1,y1), point2D(x2,y2)) = point2D(x1 + x2,y1 + y2)
Remarque(s) :

— il ne sert a rien d’ajouter trop d’axiomes, au risque d’avoir un TAD inconsistant ou de proposer
des tautologies.

Par exemple I’axiome point2D(obtenir X (pl), obtenirY (pl)) = pl est une tautologie.
En effet si on remplace pl par point2D(x,y), on a alors :

point2D (obtenir X (point2D(x,y)), obtenirY (point2D(x,y))) = point2D(x,y)
Soit

point2D(x,y) = point2D(z,y)

qui est toujours vrai.

2. Conception préliminaire : Donnez les signatures des fonctions et procédures des opérations de ce TAD
Correction proposée:

— fonction point2D (x,y : Reel) : Point2D

— fonction obtenirX (p : Point2D) : Reel

— fonction obtenirY (p : Point2D) : Reel

— fonction distanceEuclidienne (p1,p2 : Point2D) : ReelPositif

— procédure translater (E/S p : Point2D,E vecteur : Point2D)

— procédure realiserRotation (E/S p : Point2D,E centre : Point2D, angleEnDegre : Reel)

Remarque(s) :

— 1II est important de choisir de bons identifiants pour les parametres formels. Ici il pourrait y
avoir ambiguité sur I’unité du parametre formel de 1’angle de la rotation.

6.2 Polyligne

<« Une ligne polygonale, ou ligne brisée (on utilise aussi parfois polyligne par traduction de 1’anglais poly-
line) est une figure géométrique formée d’une suite de segments, la seconde extrémité de chacun d’entre eux
étant la premiere du suivant.[...] Un polygone est une ligne polygonale fermée. > (Wikipédia)

La figure [6.1] présente deux polylignes composées de 5 points.

De cette définition nous pouvons faire les constats suivants :

— Tous les points d’une polyligne sont distincts ;

— Une polyligne est constituée d’au moins deux points;
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(a) polyligne ouverte (b) polyligne fermée

FIGURE 6.1 — Deux polylignes

— On peut obtenir le nombre de points d’une polyligne ;

— Une polyligne est ouverte ou fermée (qu’elle soit ouverte ou fermée ne change pas le nombre de points :
dans le cas ol elle est fermée, on considere qu’il a une ligne entre le dernier et le premier point);

— On peut insérer, supprimer des points a une polyligne (par exemple la figure [6.2| présente la supression
du troisieme point de la polyligne ouverte de la figure [6.1).

— On peut parcourir les points d’une polyligne ;
— On peut effectuer des transformations géométriques (translation, rotation, etc.);

— On peut calculer des propriétés d’une polyligne (par exemple sa longueur totale).

FIGURE 6.2 — Supression d’un point

6.2.1 Analyse

Proposez le TAD Polyligne (sans les parties Axiome et Sémantique) avec les opérations suivantes :
— créer une polyligne ouverte a partir de deux Point2D;
— savoir si une polyligne est fermée ;
— ouvrir une polyligne ;
— fermer une polyligne;
— connaitre le nombre de points d’un polyligne ;
— obtenir le ieme point d’une polyligne ;
— insérer le iéme point d’une polyligne ;
— supprimer le ieme point d’une polyligne (on suppose qu’elle a au moins 3 points);

— calculer la longueur d’un polyligne ;
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— translater une polyligne ;

— faire une rotation d’une polyligne.

Correction proposée:

Nom: Polyligne

Utilise: Reel,Booleen,NaturelNonNul,Point2D

Opérations:  polyligne: Point2D x Point2D — Polyligne
estFermee: Polyligne — Booleen
ouvrir: Polyligne — Polyligne
fermer: Polyligne — Polyligne
nbPoints: Polyligne — NaturelNonNul
iemePoint: Polyligne x NaturelNonNul - Point

ajouterPoint: Polyligne x Point x NaturelNonNul — Point
supprimerPoint: Polyligne x NaturelNonNul - Polyligne
longueur: Polyligne — ReelPositif
translater: Polyligne x Point2D — Polyligne
realiserRotation: Polyligne x Point2D x Reel — Polyligne
Préconditions: polyligne(ptl, pt2): ptl # pt2
iemePoint(pl,i): i < nbPoints(pl)
ajouter Point(pl, pt,i): i < nbPoints(pl) etVj € 1..nbPoints(pl),iemePoint(pl, j) #
pt
supprimer Point(pl,i): i < nbPoints(pl) et nbPoints(pl) > 3

Remarque(s) :

— Il est a noter que les trois dernieres opérations ne sont pas obligatoires, elles pourraient étre congues
en tant qu’utilisateur du TAD Polyligne.

6.2.2 Conception préliminaire

Proposez la signature des fonctions et procédures pour le type Polyligne.

Correction proposée:

— fonction polyligne (ptl,pt2 : Point2D) : Polyligne
| précondition(s) ptl # pt2

— fonction estFermee (pl , Polyligne) : Booleen

— procédure fermer (E/S pl : Polyligne)

— procédure ouvrir (E/S pl : Polyligne)

— fonction nbPoints (pl : Polyligne) : NaturelNonNul

— fonction iemePoint (pl : Polyligne, position : NaturelNonNul) : Point2D
| précondition(s) position < nbPoints(pl)

— procédure ajouterPoint (E/S pl : Polyligne,E pt : Point2D, position : NaturelNonNul)
| précondition(s) position < nbPoints(pl) + 1 etVi € 1..nbPoints(pl),iemePoint(pl,i) # pt
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— procédure supprimerPoint (E/S pl : Polyligne,E position : NaturelNonNul)
| précondition(s) position < nbPoints(pl) et nbPoints(pl) > 3
— fonction longueur (pl : Polyligne) : ReelPositif
— procédure translater (E/S pl : Polyligne,E vecteur : Point2D)
— procédure realiserRotation (E/S pl : Polyligne,E centre : Point2D, angleEnRadian : Reel)

6.2.3 Conception détaillée

On propose de représenter le type Poly1ligne de la fagon suivante :
Type Polyligne = Structure
lesPts : Tableau[1..MAX] de Point2D
nbPts : Naturel
estFermee : Booleen
finstructure
Proposez les fonctions et procédures correspondant aux opérations suivantes :

— créer une polyligne ouverte a partir de deux Point2D;
— ouvrir une polyligne ;

— translater une polyligne.

Correction proposée:
fonction polyligne (ptl,pt2 : Point2D) : Polyligne
Déclaration resultat : Polyligne

debut
resultat.nbPts < 2
resultat.lesPts[1] < ptl
resultat.lesPts[2] < pt2
resultat.estFermee <— FAUX
retourner resultat

fin

procédure ouvrir (E/S pl : Polyligne)

debut
pl.estFermee < FAUX

fin

procédure translater (E/S pl : Polyligne,E vecteur : Point2D)

Déclaration i: Naturel

debut
pour i <1 a nbPoints(pl) faire
Point2D.translater(pl.lesPts[i],vecteur)
finpour
fin

Remarque(s) :
— 1l est a noter que cette derniere procédure aurait pu étre écrite en utilisant le principe d’encapsula-
tion :
procédure translater (E/S pl : Polyligne,E vecteur : Point2D)




42 CHAPITRE 6. UN PEU DE GEOMETRIE

Déclaration i: Naturel

debut
pour i <1 a nbPoints(pl) faire
temp <— iemePoint(pl,i)
Point2D.translater(temp,vecteur)
supprimerPoint(pl,i)
ajouterPoint(pl,temp,i)
finpour
fin
Mais cela met en avant le fait qu’il manque une opération remplacer non obligatoire mais qui facilite
la vie des utilisateurs du TAD.

6.3 Utilisation d’une polyligne

Dans cette partie, nous sommes utilisateur du type Polyligne et nous respectons le principe d’encapsu-
lation.

6.3.1 Point a Pintérieur

Nous supposons posséder la fonction suivante qui permet de calculer 1’angle orienté en degré formé par les
segments (ptCentre, ptl) et (ptCentre, pt2) :

— fonction angle (ptCentre,ptl,pt2 : Point2D) : Reel
| précondition(s) ptl#ptCentre et pt2#ptCentre

Il est possible de savoir si un point pt est a I’intérieur ou a I’extérieur d’une polyligne fermée en calculant
la somme des angles orientés formés par les segments issus de pt vers les points consécutifs de la polyligne. En
effet si cette somme en valeur absolue est égale a 360° alors le point pt est a I’intérieur de la polyligne, sinon il
est a I’extérieur.

Par exemple, sur la figure on peut savoir algorithmiquement que pt est a I’intérieur de la polyligne car
‘Oq + oo +a3+ ag + 065‘ = 360.

FIGURE 6.3 — Point a I'intérieur d’une polyligne

Proposez le code de la fonction suivante :estALInterieur
fonction estALinterieur (p : Polyligne, pt : Point2D) : Booleen

| précondition(s) estFerme(p) et non estSurLaFrontiere(pt,p)

Correction proposée:
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fonction estALinterieur (p : Polyligne, pt : Point2D) : Booleen

| précondition(s) estFerme(p) et non estSurLaFrontiere(pt,p)

Déclaration i: Naturel
sommeAngle : Reel

debut
sommeAngle <+ 0
pour i <1 a nbPoints(p)-1 faire
sommeAngle < sommeAngle+angle(pt,iemePoint(p,i),iemePoint(p,i+1))
finpour
sommeAngle < sommeAngle+angle(pt,iemePoint(p,nbPoints(p)),iemePoint(p,1))
retourner sommeAngle=360 ou sommeAngle=-360
fin

6.3.2 Surface d’une polyligne par la méthode de monté-carlo

Une des facons d’approximer la surface d’une polyligne est d’utiliser la méthode de Monté-Carlo. Le prin-
cipe de cette méthode est de <« calculer une valeur numérique en utilisant des procédés aléatoires, c’est-a-dire
des techniques probabilistes > (Wikipédia). Dans le cas du calcul d’une surface, il suffit de tirer au hasard des
points qui sont a ’intérieur du plus petit rectangle contenant la polyligne. La surface .S de la polyligne pourra
alors étre approximée par la formule suivante :

Nb points dans la polyligne
Nb points total

S ~ SurfaceDuRectangle x

Par exemple, sur la figure[6.4] en supposant que le rectangle fasse 3 cm de hauteur et 4, 25 cm de largeur, et
qu’il y a 28 points sur 39 qui sont a I’intérieur de la polyligne, sa surface S peut étre approximée par :

2
S~3x4,25x£=9,39cm2

FIGURE 6.4 — Calcul de la surface d’une polyligne par la méthode de Monté-Carlo
On suppose posséder la procédure suivante qui permet d’obtenir un réel aléatoire entre une borne minimum
et une borne maximum :
— procédure reelAleatoire (E borneMin,bornneMax : Reel, S leReel : Reel)
1. Proposez I’analyse descendante pour le calcul d’une surface d’une polyligne a I’aide de la méthode de

Monté-Carlo.
Correction proposée:



44

CHAPITRE 6. UN PEU DE GEOMETRIE

surfacePolyligne Polyligne x Naturel — Reel
rectangleEnglobant Polyligne — Point2D x Point2D
surfaceRectangle Point2D x Point2D — Reel
pointAleatoireDansRectangle Point2D x Point2D — Point2D

. Donnez les signatures des procédures et fonctions de votre analyse descendante.

Correction proposée:

— fonction surfacePolyligne (p : Polyligne, nbPoints : Naturel) : Reel

— fonction rectangleEnglobant (p : Polyligne) : Point2D, Point2D

— fonction surfaceRectangle (ptBasGauche,ptHautDroit : Point2D) : Reel

— procédure pointAleatoireDansRectangle (E ptBasGauche,ptHautDroit : Point2D, S lePoint : Point2D)

. Donnez I’algorithme de 1’opération principale (au sommet de votre analyse descendante).

Correction proposée:

fonction surfacePolyligne (p : Polyligne, nbPoints : NaturelNonNul) : Reel

| précondition(s) estFerme(p) et not tousLesPointsAlignes(p)

Déclaration ptBasGauche, ptHautDroit, pt : Point2D
i, nbDans, nbPointsTotal : Naturel

debut
ptBasGauche,ptHautDroit < rectangleEnglobant(p)
surface <— surfaceRectangle(ptBasGauche,ptHautDroit)
nbDans <+ 0
nbPointsTotal <+ 0
tant que nbPointsTotal£nbPoints faire
pointAleatoireDansRectangle(ptBasGauche,ptHautDroit, pt)
si non estSurLaFrontiere(p, pt) alors
nbPointsTotal <— nbPointsTotal+1
si estALinterieur(p,pt) alors
nbDans < nbDans+1
finsi
finsi
fintantque
retourner surface*nbDans/nbPointsTotal
fin



Chapitre 7

Tri par tas

Attendus d’apprentissages disciplinaires évalués

— ANO004 :
— CD102:
— CD201 :
— CD202:
— CD501 :

Comprendre et appliquer des consignes algorithmiques sur un exemple
Calculer une complexité dans le pire et le meilleur des cas

Identifier et résoudre le probleme des cas non récursifs

Identifier et résoudre le probléme des cas récursifs

Comprendre les algorithmes des différents tris et leurs complexités

7.1 Qu’est ce qu’un tas?

Un tas est un arbre binaire particulier : la valeur de chaque noeud est supérieure aux valeurs contenues dans
ses sous-arbres et 1’arbre est rempli par niveau (de gauche a droite), un nouveau niveau n’étant commencé que

lorsque le précédent est complet.

Un tas peut étre représenté ’aide d’un tableau ¢ de telle sorte que les fils gauche et droit de ¢[i] sont

respectivement ¢[2 * | et £[2 * i + 1].

Dessinez I’arbre binaire représenté par le tableau ¢ suivant :

Correction proposée:

45
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() (s
0101010
(DO

7.2 Fonction estUnTas

Donnez 1’algorithme récursif de la fonction suivante qui permet de savoir si un tableau ¢ de n éléments
significatifs représente un tas a partir de la racine de position ¢ :

— fonction estUnTas (t : Tableau[1..MAX] d’Entier, i,n : Naturel) : Booleen

| précondition(s) i<n

Correction proposée:
fonction estUnTas (t : Tableau[1.. MAX] d’Entier, i,n : Naturel) : Booleen

| précondition(s) i<n

debut
si 2*1 > n alors
retourner VRAI
sinon
si 2*i+1 > n alors
retourner t[i]>t[2%i]
sinon
si t[i]>max(t[2*i],t[2*i+1]) alors
retourner estUnTas(t,2*i,n) et estUnTas(t,2*i+1,n)
sinon
retourner FAUX
finsi
finsi
finsi
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fin

7.3 Procédure faireDescendre

A I'issue de 1’appel a cette procédure faireDescendre, 1 arbre (représenté par un tableau) dont la racine est
en position ¢ sera un tas. On présuppose que les deux arbres dont les racines sont positionnées en 2¢ et 27 + 1
sont des tas.

La signature de cette procédure est :

— procédure faireDescendre (E/S t : Tableau[1..MAX] d’Entier.E i,n : Naturel)

1. En supposant que la premiere valeur du tableau ¢ de la partie ne soit pas 87 mais 30. Donnez les
valeurs de ¢ apres ’appel faireDescendre(t,1,10).

2. Proposez I’algorithme de la procédure faireDescendre.

3. Donnez la complexité dans le pire des cas de votre algorithme. Justifiez.

Correction proposée:

1. On obtient alors le tableau :
17714047 [33]30[24[25]18[5]29]
2. L’algorithme est :
fonction indiceDuMax (t : Tableau[1.. MAX] d’Entier, n,i,j : Naturel) : Naturel

| précondition(s) i<neti<j

debut
si j<n alors
si t[i]>t[j] alors
retourner i
sinon
retourner j
finsi
sinon
retourner i
finsi
fin
Version itérative
procédure faireDescendre (E/S t : Tableau[1.. MAX] d’Entier.E i,n : Naturel)

Déclaration elementBienPositionne :Booleen
posDuMax :Naturel

debut
elementBienPositionne +— FAUX
tant que non elementBienPositionne faire
si 2*1<n alors
// dans ce cas i ne référence pas une feuille
posDuMax < indiceDuMax(t,n,2%i,2%i+1)
si t[i]<t[posDuMax] alors
echanger(t[i],t[posDuMax])
i ¢ posDuMax
sinon
elementBienPositionne < VRAI
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finsi
sinon
elementBienPositionne < VRAI
finsi
fintantque
fin
Version récursive
procédure faireDescendre (E/S t : Tableau[1..MAX] d’Entier,E i,n : Naturel)

Déclaration posDuMax :Naturel

debut
si 2*1<n alors
posDuMax < indiceDuMax(t,n,2*i,2*i+1)
si t[i]<t[posDuMax] alors
echanger(t[i],t[posDuMax])
faireDescendre(t,posDuMax,n)
finsi
finsi
fin

3. A chaque itération I’indice de i est multiplié par 2 (2 un pres) jusqu’a ce que 7 soit plus grand que n, la
complexité est donc en loga(n).

7.4 Procédure tamiser

L’ objectif de cette procédure est de transformer un tableau de n éléments significatifs quelconque en un tas.
Pour ce faire on part du milieu du tableau en remontant jusqu’au premier élément du tableau pour qu’a I’issue
de chaque itération 1’arbre représenté par le tableau dont la racine est a la position ¢ soit un tas.

1. Soit le tableau ¢ suivant :

1 2 3 4 5 6 7 8 9 10
t[33][77[25][18[40[24[47[87]5]29]

Donnez les valeurs de ce tableau a I’issue de chaque itération.

2. Proposez I’algorithme de la procédure tamiser.

3. Donnez la complexité dans le pire des cas de votre algorithme. Justifiez.

Correction proposée:

1. A I’issue de chaque itération on a :
i=5 3377251840 |24 |47 |87 |5|29
i=4 33|77 |25 |87 40|24 |47 |18 |5 |29
i=3 33|77 |47 8740 |24 25|18 |5 |29
i=2 33|87 |47 77140 |24 |25 |18 |5 |29
i=1 |87 | 77|47 33140 |24 |25 |18 |5 |29

2. On obtient I’algorithme :
procédure tamiser (E/S t : Tableau[1.. MAX] d’Entier.E n : Naturel)
Déclaration 1 : Naturel

debut
pour i <—n div 2 a 1 pas de -1 faire
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faireDescendre(t,i,n)
finpour
fin

3. L’algorithme est une boucle déterministe dont I’une des bornes est fonction de la taille du probleme n, la
complexité est donc n fois la complexité du corps de cette itération. On a donc une complexité dans le
pire des cas qui de n * loga(n).

7.5 Procédure trierParTas

Le principe du tri par tas est simple. Apres avoir transformé le tableau ¢ composé de n éléments significatifs
en un tas, cet algorithme est composé d’itérations ¢ (allant de n jusqu’a 2) qui :

— échange t[1] et t[i];
— s’assure que le tableau de 7 — 1 éléments significatifs soit un tas.

Voici les différentes étapes de cet algorithme une fois que le tableau ¢ de la partie ait été transformé en
tas (tableau de la partie(7.1)) :

1177140 |47 33|29 24|25 |18 | 5 |8&7
2147140253329 |24 |5 |18 |77 |87
3140 |33 |25|18 29|24 | 5 |47 |77 |87
41331292518 | 5 |24 40|47 |77 |87
5129124 25|18 | 5 |33 140 |47 |77 |87
6125|124 | 5 | 18129 (33|40 |47 |77 | 87
7124 18| 5 | 25|29 |33 |40 |47 |77 |87
8|18 | 5 |24 (25|29 (33|40 |47 |77 |87
9|5 | 18|24 25|29 |33 |40 |47 |77 |87

1. Dessinez I’analyse descendante a posteriori de ce probleme.
2. Proposez I’algorithme de la procédure trierParTas.

3. Donnez la complexité dans le pire des cas de votre algorithme. Justifiez.

Correction proposée:

1. Analyse descendante :
trierParTas Tableau[l. MAX] d’Entier x Naturel — Tableau[1. MAX] d’Entier

tamiser Tableau[l..MAX] d’Entier x Naturel — Tableau[1..MAX] d’Entier
faireDescendre Tableau[l..MAX] d’Entier x Naturel x Naturel — Tableau[1..MAX] d’Entier
2. L’algorithme
procédure triecrParTas (E/S t : Tableau[1.. MAX] d’Entier.E n : Naturel)
debut
tamiser(t,n)
pour i <—n a 2 pas de -1 faire
echanger(t[1],t[i])
faireDescendre(t,1,i-1)
finpour
fin

3. Complexité : 1’algorithme est composé d’un schéma séquentiel a deux instructions : tamiser est en n *
loga(n) et la deuxiéme instruction (le pour) est aussi en n * logz(n). La complexité dans le pire des cas
esten n x loga(n).
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Chapitre 8

Sudoku

Attendus d’apprentissages disciplinaires évalués

— AN201 : Identifier les dépendances d’un TAD

— AN?203 : Savoir si une opération identifiée fait partie du TAD a spécifier
— AN205 : Formaliser les préconditions d’une opération d’un TAD

— AN205 : Formaliser les préconditions d’une opération d’un TAD

— AN301 : Lister les collections usuelles

— CPO003 : Choisir entre une fonction et une procédure

— CDO003 : Utiliser le principe d’encapsulation

— CD201 : Identifier et résoudre le probleme des cas non récursifs

— CD202 : Identifier et résoudre le probleme des cas récursifs

\. J

Le jeu du Sudoku est composé d’une grille carrée de 9 cases de coté. Ce jeu consiste <« a compléter toute la
grille avec des chiffres allant de 1 & 9. Chaque chiffre ne doit étre utilisé qu’une seule fois par ligne, par colonne
et par carré de neuf cases >>|H

On suppose que 1’on numérote les lignes, les colonnes et les carrés d’une grille de Sudokude 1 a 9.

La grille présentée par la figure 8.1] présente une grille de Sudoku a compléter.

Soit les TAD Coordonnee et GrilleSudoku suivants :

Nom: Coordonnee
Utilise: Naturel
Opérations: coordonnee: 1..9 x 1..9 — Coordonnee

obtenirLigne:  Coordonnee — 1..9
obtenirColonne: Coordonnee — 1..9
obtenirCarre: Coordonnee — 1..9

Axiomes: - obtenirColonne(coordonnee(c,l))=c
- obtenirLigne(coordonnee(c,l))=1
- obtenirCarre(c)=3*((obtenirLigne(c)-1) div 3)+((obtenirColonne(c)-1) div3)+1

Nom: GrilleSudoku
Utilise: Naturel, Coordonnee, Booleen
Opérations:  grilleSudoku: — GrilleSudoku
caseVide: GrilleSudoku x Coordonnee — Booleen

1. Définition donnée par le journal le Monde.
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Numérotation des colonnes

315 Numérotation
8|3 ) des
carrés
Numérotation 2 6.7
des __—»
lignes 9 7 1
62 3 9
3/819
5 4 2 8
4 2 6

FIGURE 8.1 — Exemple de grille de Sudoku

obtenirChiffre: GrilleSudoku x Coordonnee - 1..9

fixerChiffre:  GrilleSudoku x Coordonnee x 1..9 - GrilleSudoku

viderCase: GrilleSudoku x Coordonnee — GrilleSudoku
Sémantiques: grilleSudoku: permet de créer une grille de Sudoku vide

caseVide: permet de savoir si une case d’une grille de Sudoku vide

obtenirChiffre: permet d’obtenir le chiffre d’une case non vide

fixerChiffre:  permet de fixer un chiffre d’une case vide

viderCase: permet d’enlever le chiffre d’une case non vide
Préconditions: obtenirChiffre(g,c): non caseVide(g,c)

fixerChiffre(g,c,v):  caseVide(g,c)

viderCase(g,c): non caseVide(g,c)

8.1 Conception préliminaire

Donnez la signature des fonctions et procédures correspondant aux deux TAD précédents.

Correction proposée:
— fonction coordonnee (c,l: 1..9) : Coordonnee
— fonction obtenirLigne (c : Coordonnee) : 1..9
— fonction obtenirColonne (c : Coordonnee) : 1..9
— fonction obtenirCarre (c : Coordonnee) : 1..9
— fonction grilleSudoku () : GrilleSudoku
— fonction caseVide (g : GrilleSudoku, ¢ : Coordonnee) : Booleen
— fonction obtenirChiffre (g : GrilleSudoku, ¢ : Coordonnee) : 1..9

| précondition(s) non caseVide(g,c)
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— procédure fixerChiffre (E/S g : GrilleSudoku,E ¢ : Coordonnee, v : 1..9)
| précondition(s) caseVide(g,c)
— procédure viderCase (E/S g : GrilleSudoku,E c : Coordonnee)

| précondition(s) non caseVide(g,c)

8.2 Conception détaillée

On se propose de concevoir le TAD Coordonnee de la fagon suivante :
Type Coordonnee = Structure
ligne:1..9
colonne : 1..9
finstructure
Donnez les algorithmes des fonctions correspondant aux opérations de ce TAD.

Correction proposée:
fonction coordonnee (c,1: 1..9) : Coordonnee

Déclaration resultat : Coordonnee

debut

resultat.colonne < ¢

resultat.ligne < 1

retourner resultat
fin
fonction obtenirLigne (c : Coordonnee) : 1..9
debut

retourner c.ligne
fin
fonction obtenirColonne (¢ : Coordonnee) : 1..9
debut

retourner c.colonne
fin
fonction obtenirCarre (c : Coordonnee) : 1..9
debut

retourner 3*((c.ligne-1) div 3)+(c.colonne -1) div 3+1
fin

8.3 Fonctions métiers

On se propose d’écrire des fonctions et procédures permettant de vérifier ou d’aider a la résolution manuelle
d’une grille de Sudoku.

1. Donnez I’algorithme de la fonction suivante qui permet de savoir si une grille de Sudoku est totalement
remplie (sans vérifier sa validité) :
— fonction estRemplie (g : GrilleSudoku) : Booleen

2. On suppose que I’on possede les fonctions suivantes qui permettent d’obtenir I’ensemble des chiffres déja
fixés d’une colonne, d’une ligne ou d’un carré :
— fonction obtenirChiffresDUneLigne (g : GrilleSudoku, ligne : 1..9) : Ensemble< 1..9 >
— fonction obtenirChiffresDUneColonne (g : GrilleSudoku, colonne : 1..9) : Ensemble< 1..9 >



54 CHAPITRE 8. SUDOKU

— fonction obtenirChiffresDUnCarre (g : GrilleSudoku, carre : 1..9) : Ensemble< 1..9 >

Donnez I’algorithme de la fonction suivante qui permet de savoir si on peut mettre un chiffre dans une
case vide sans contredire la régle donnée en introduction :

— fonction estChiffreValable (g : GrilleSudoku, chiffre : 1..9, case : Coordonnee) : Booleen
| précondition(s) caseVide(g,case)
3. Donnez I’algorithme la fonction suivante qui donne la liste des solutions possibles pour une case vide :
— fonction obtenirSolutionsPossibles (g : GrilleSudoku, case : Coordonnee) : Liste< 1..9 >
| précondition(s) caseVide(g,case)

4. Donnez I’algorithme de la fonction suivante qui cherche la solution d’une grille de sudoku g (le booléen
indique s’il y a effectivement une solution) :

— fonction chercherSolution (g : GrilleSudoku) : GrilleSudoku, Booleen

Correction proposée:

1.
fonction estRemplie (g : GrilleSudoku) : Booleen

Déclaration i,j:1..9
¢ : Coordonnee
resultat : Booleen

debut
resultat < VRAI
finDeBoucle < FAUX
i1
j<1
tant que resultat et non finDeBoucle faire
¢ < coordonnee(i,j)
si estVide(g,c) alors
resultat < FAUX
sinon
si i=9 alors
si j=9 alors
finDeBoucle < VRAI
sinon
i1
jj+l
finsi
sinon
14 i+l
finsi
finsi
fintantque
retourner resultat
fin

fonction estChiffreValable (g : GrilleSudoku, chiffre : 1..9, case : Coordonnee) : Booleen

| précondition(s) caseVide(g,case)
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Déclaration el,e2,e3 : Ensemble< 1..9 >

debut
el < obtenirChiffresDUneLigne(g,obtenirLigne(c))
e2 < obtenirChiffresDUneColonne(g,obtenirColonne(c))
e3 « obtenirChiffresDUnCarre(g,obtenirCarre(c))
retourner non estPresent(el,chiffre) et non estPresent(e2,chiffre) et non estPresent(e3,chiffre)

fin
3.
fonction obtenirSolutionsPossibles (g : GrilleSudoku, case : Coordonnee) : Liste< 1..9 >
| précondition(s) caseVide(g,case)
Déclaration resultat : Liste< 1..9 >
i:1.9
debut
resultat <— liste()
pouri<«1 a9 faire
si estChiffreValable(g,i,case) alors
inserer(resultat,1,1)
finsi
finpour
retourner resultat
fin
4,

fonction premiereCaseVide (g) : Coordonnee
| précondition(s) non estRemplie(g)

Déclaration i,j: 1.9
¢ : Coordonnee

debut
trouve <— FAUX
1+ 1
tant que non trouve et i<9 faire
j<1
tant que non trouve et i<9 faire
¢ < coordonnee(i,j)
si caseVide(g,c) alors
trouve < VRAI
finsi
jj+l
fintantque
1+ i+l
fintantque
retourner ¢
fin
fonction chercherSolution (g : GrilleSudoku) : GrilleSudoku, Booleen
Déclaration temp, sol : GrilleSudoku
k:1.9
1: Liste<1..9>
trouve : Booleen
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debut
si estRemplie(g) alors
retourner g, VRAI
sinon
trouve <+ FAUX
¢ < premiereCaseVide(g)
1 < obtenirSolutionsPossibles(g,c)
k+1
tant que non trouve et k<<longueur(l) faire
temp <— g
fixerChiffre(temp,c,obtenirElement(l,k))
sol, trouve <— chercherSolution(temp)
k <+ k+1
fintantque
retourner sol, trouve
finsi
fin

CHAPITRE 8. SUDOKU
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Liste

Attendus d’apprentissages disciplinaires évalués

— AN301 : Lister les collections usuelles

— CP003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

— CPO0O0S5 : Choisir un passage de parametre (E, S, E/S)

— CDO003 : Utiliser le principe d’encapsulation

— CD201 : Identifier et résoudre le probleme des cas non récursifs
— CD202 : Identifier et résoudre le probleme des cas récursifs

— (D401 : Concevoir et utiliser des listes chainées

— CD901 : Concevoir un type de données adapté a la situation en terme d’espace mémoire et d’effi-
cacité

9.1 SDD ListeChainee

9.1.1 Type et signatures de fonction et procédure

Apres avoir rappelé le SDD ListeChainee dans le paradigme de la programmation structurée, donnez les
signatures des fonctions et procédures permettant de 1’utiliser.

Correction proposée:
Voir le cours

9.1.2 Utilisation

1. Ecrire une fonction booléenne itérative, estPresent, qui permet de savoir si un élément est présent
dans une liste chainée.

2. Ecrire une fonction booléenne récursive, estPresent, qui permet de savoir si un élément est présent
dans une liste chalnée.

3. Ecrire une procédure récursive, concatener, qui concaténe deux listes chainées.
4. Ecrire une procédure récursive, inverser, qui permet d’inverser une liste chainée.

5. Ecrire une procédure itérative, inverser, qui permet d’inverser une liste chainée.
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Correction proposée:

1. fonction estPresent itérative
fonction estPresent (1 : ListeChainee, cherche : Element) : Booleen

Déclaration resultat : Booleen
liste : ListeChainee

debut
resultat <+ FAUX
liste <1
tant que non estVide(liste) et non resultat faire
si obtenirElement(liste) = cherche alors
resultat < VRAI
sinon
liste <— obtenirListeSuivante(liste)
finsi
fintantque
retourner resultat
fin

2. est présent récursif

fonction estPresent (liste : ListeChainee, cherche : Element) : Booleen
debut
si estVide(liste) alors
retourner FAUX
sinon
si obtenirElement(liste) = cherche alors
retourner VRAI
sinon
retourner estPresent(obtenirListeSuivante(liste),cherche)
finsi
finsi
fin

3. concaténation
procédure concatener (E/S 11 : ListeChainee,E 12 : ListeChainee)
Déclaration temp : ListeChainee

debut
si estVide(11) alors
11+ 12
sinon
si non estVide(12) alors
temp <— obtenirListeSuivante(11)
concatener(temp,l2)
si estVide(obtenirListeSuivante(11)) alors
fixerListeSuivante(l1, temp)
finsi
finsi
finsi
fin
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4. inverser (récursif)
procédure inverser (E/S 1 : ListeChainee)

Déclaration temp : ListeChainee

debut
si non estVide(l) alors
temp <— obtenirListeSuivante(l)
inverser(temp)
fixerListeSuivante(l,listeChainee())
concatener(temp,l)
1 < temp
finsi
fin

5. inverser (itératif)
procédure inverser (E/S 1 : ListeChainee)

Déclaration resultat,temp : ListeChainee

debut
resultat < listeVide()
tant que non estVide(l) faire
temp < |
1 + obtenirListeSuivante(l)
fixerListeSuivante(temp,resultat)
resultat <— temp
fintantque
1 < resultat
fin

9.2 Conception détaillée d’une liste ordonnée d’entiers a ’aide d’une liste
chainée
Cet exercice propose de concevoir le type ListeOrdonneeDEntiers (ou LODE) avec le SDD ListeChainee
de I’exercice précédent.

1. Proposez une conception détaillée du type ListeOrdonneeDEntiers

2. Ecrire les fonctions/procédures creationListeOrdonneeDEntiers, inserer, supprimer un élément (le pre-
mier, et que I’on sait présent), obtenirlemeElement a la i¢me position et longueur proposées par ce type

Correction proposée:

1.

Type ListeOrdonneeDEntiers = Structure
entiers : ListeChainee<Entier>
nbEntiers : Naturel

finstructure

2.

fonction longueur (I :ListeOrdonneeDEntiers) : Naturel
debut
retourner l.nbEntiers
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fin

fonction obtenirEntiers (I :ListeOrdonneeDEntiers) : ListeChainee<Entier>
debut

retourner l.entiers
fin

procédure fixerNbEntiers (E/S 1 : ListeOrdonneeDEntiers, E valeur : Naturel)
debut

l.nbEntiers < valeur
fin

procédure fixerEntiers (E/S 1: ListeOrdonneeDEntiers, E liste : ListeChainee<<Entier>)
debut

Lentiers < liste
fin

fonction listeOrdonneeDEntiers () : ListeOrdonneeDEntiers
Déclaration resultat : ListeOrdonneeDEntiers

debut
fixerEntiers(resultat, listeChainee())
fixerNbEntiers(resultat, 0)
retourner resultat

fin

// Version itérative

procédure insererDansListeChainee (E/S 1: ListeChainee <Entier>, E element : Entier)
Déclaration parcours, nouveau, temporaire : ListeChainee<Entier>

debut
si estVide(l) alors
ajouter(l,element)
sinon
si obtenirElement(l) > element alors
ajouter(l,element)
sinon
g1
d « obtenirListeSuivante(g)
tant que non estVide(d) et obtenirElement(d) < element faire
g+d
d + obtenirListeSuivante(g)
fintantque
ajouter(d,element)
fixerListeSuivante(g,d)
finsi
finsi
fin
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// Version récursive

procédure insererDansListeChainee (E/S 1 : ListeChainee <Entier>, E element : Entier)
Déclaration temp : ListeChainee<Entier>

debut
si estVide(l) alors
ajouter(l, element)
sinon
si obtenirElement(l) > element alors
ajouter(l,element)
sinon
temp <— obtenirListeSuivante(l)
insererDansListeChainee(temp, element)
fixerListeSuivante(l, temp)
finsi
finsi
fin

procédure inserer (E/S 1 : ListeOrdonneeDEntiers, E element : Entier)
Déclaration temp : ListeChainee<Entier>

debut
temp <— obtenirEntiers(l)
insererDansListeChainee(temp, element)
fixerEntiers(l, temp)
fixerNbEntiers (1, longueur(l) + 1)

fin

procédure supprimerDansListeChainee (E/S 1: ListeChainee, E e : Entier)

| précondition(s) estPresent(], e)
Déclaration temp : ListeChainee <Entier>

debut
si obtenirElement(l) = e alors
supprimerTete(l)
sinon
temp <— obtenirListeSuivante(l,e)
supprimerDansListeChainee(temp,e)
fixerListeSuivante(l, temp)
finsi
fin

procédure supprimer (E/S | : ListeOrdonneeDEntiers, E element : Entier)

| précondition(s) estPresent(l, )
Déclaration temp : ListeChainee <Entier>

debut
temp <— obtenirEntiers(l)
supprimerDansListeChainee(temp,element)
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fixerEntiers(l, temp)
fixerNbEntiers(l, longueur(l) - 1)
fin

fonction obtenirlemeElement (liste : ListeOrdonneeDEntiers, i : NaturelNonNul) : Entier
| précondition(s) i < longueur(liste)

Déclaration 11 : ListeOrdonneeDEntiers
j : Naturel

debut
11 < obtenirEntiers(liste)
pour j <2 a i faire
11 < obtenirListeSuivante(11)
finpour
retourner obtenirElement(11)
fin

fonction longueur (liste : ListeOrdonneeDEntiers) : Naturel
debut

retourner longueur(liste)
fin

9.3 Utilisation : Liste ordonnée d’entiers

Ecrire une fonction, fusionner, qui permet de fusionner deux listes ordonnées

Correction proposée:

procédure insererUneListeOrdonneeDEntiers (E/S dans : ListeOrdonneeDEntiers, E liste : ListeOrdonnee-
DEntiers)

Déclaration i : Naturel

debut
pour i <1 a longueur(liste) faire
inserer(dans, obtenirlemeElement(liste, 1))
finpour
fin

fonction fusionner (11,12 : ListeOrdonneeDEntiers) : ListeOrdonneeDEntiers
Déclaration resultat : ListeOrdonneeDEntiers

debut
resultat < listeOrdonneeDEntiers()
insererUneListeOrdonnéeDEntiers(resultat, 11)
insererUneListeOrdonnéeDEntiers(resultat, 12)

retourner resultat
fin
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Arbre Binaire de Recherche (ABR)

Attendus d’apprentissages disciplinaires évalués

— CD201 : Identifier et résoudre le probleme des cas non récursifs
— CD202 : Identifier et résoudre le probleme des cas récursifs

— CD403 : Concevoir et utiliser des arbres (binaires, n-aires)

— CD601 : Concevoir des collections a I’aide de SDD

— CD602 : Comprendre les algorithmes d’insertion et de suppression (naifs et AVL) dans un arbre
binaire de recherche

— CDY901 : Concevoir un type de données adapté a la situation en terme d’espace mémoire et d’effi-
cacité

10.1 Conception préliminaire et utilisation d’un ABR

Pour rappel, le TAD ABR modélisant un Arbre Binaire de Recherche est défini de la fagon suivante :

Nom: ABR (ArbreBinaireDeRecherche)
Parameétre: Element

Utilise: Booleen

Opérations: aBR: — ABR

estVide:  ABR — Booleen
insérer: ABR x Element — ABR
supprimer: ABR x Element — ABR
estPresent: ABR x Element — Booleen
obtenirElement: ABR — Element
obtenirFilsGauche: ABR - ABR
obtenirFilsDroit: ABR -» ABR
Axiomes: - estVide(aBR())

- non estVide(insérer(e,a))

- obtenirElement(insérer(e,aBR()))=¢e

- obtenirFilsGauche(insérer(e,a))=insérer(e,obtenirFilsGauche(a)
et obtenirElement(a)> e

- obtenirFilsDroit(insérer(e,a))=insérer(e,obtenirFilsDroit(a)
et obtenirElement(a)< e
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Préconditions: obtenirElement(a): non(estVide(a))
obtenirFilsGauche(a): non(estVide(a))
obtenirFilsDroit(a): non(estVide(a))

1. Donner les signatures des fonctions et procédures d’un ABR.

2. Ecrire une procédure récursive, afficherEnOrdreCroissant, qui affiche, en ordre croissant, tous
les éléments d’un ABR.

3. Ecrire une procédure récursive, af ficherEnOrdreDecroissant, qui affiche, en ordre décroissant,
tous les éléments d’un ABR.

4. Ecrire une fonction récursive, hauteur, qui calcule la hauteur d’'un ABR (-1 si I’arbre est vide, 0 s’il
n’y a qu’un seul élément).

5. Ecrire une fonction récursive, nbElements, qui calcule le nombre d’éléments d’un arbre.

Correction proposée:

1. Voir le cours

2.

procédure afficherEnOrdreCroissant (E a : ABR)
debut
si non estVide(a) alors
afficherEnOrdreCroissant(obtenirFilsGauche(a))
ecrire(obtenirElement(a))
afficherEnOrdreCroissant(obtenirFilsDroit(a))
finsi
fin

procédure afficherEnOrdreDecroissant (E a : ABR)
debut
si non estVide(a) alors
afficherEnOrdreDecroissant(obtenirFilsDroit(a))
ecrire(obtenirElement(a))
afficherEnOrdreDecroissant(obtenirFilsGauche(a))
finsi
fin

fonction maximum (a, b : Element) : Element
debut
si a > b alors
retourner a
sinon
retourner b
finsi
fin

fonction hauteur (a : ABR) : Entier
debut
si estVide(a) alors
retourner -1
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sinon
retourner 1+maximum(hauteur(obtenirFilsGauche(a)),hauteur(obtenirFilsDroit(a)))
finsi
fin

fonction nbElements (a : ABR) : Naturel
debut
si estVide(a) alors
retourner O
sinon
retourner 1+nbElements(obtenirFilsGauche(a))+nbElements(obtenirFilsDroit(a))
finsi
fin

10.2 Une conception détaillée : ABR

Nous allons concevoir le type ABR a I’aide du SDD ArbreBinaire

1
2
3
4
5

. Rappeler le SDD ArbreBinaire (type et signatures des fonctions et procédures)
. Proposer une implantation du type ABR

. Expliciter la fonction booléenne : estPresent.

. Expliciter la procédure d’insertion : inserer.

. Expliciter la procédure de suppression : supprimer.

Correction proposée:

1.

Type ArbreBinaire =~ Noeud
Type Noeud = Structure
IElement : Element
filsGauche : ArbreBinaire
filsDroit : ArbreBinaire
finstructure

fonction arbreBinaire () : ArbreBinaire

fonction estVide (a : ArbreBinaire) : Booleen

fonction ajouterRacine (fg,fd : ArbreBinaire,e : Element) : ArbreBinaire
fonction obtenirElement (a : ArbreBinaire) : Element

| précondition(s) non estVide(a)
fonction obtenirFilsGauche (a : ArbreBinaire) : ArbreBinaire
| précondition(s) non estVide(a)
fonction obtenirFilsDroit (a : ArbreBinaire) : ArbreBinaire
| précondition(s) non estVide(a)
procédure fixerFilsGauche (E a : ArbreBinaire, ag : ArbreBinaire)
| précondition(s) non estVide(a)

procédure fixerFilsDroit (E a : ArbreBinaire, ad : ArbreBinaire)
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| précondition(s) non estVide(a)

procédure supprimerRacine (E/S a : ArbreBinaire, S fg,fd : ArbreBinaire)
| précondition(s) non estVide(a)

procédure supprimer (E/S a : ArbreBinaire)

2. Type ABR = ArbreBinaire

3.
fonction estPresent (a : ABR, e : Element) : Booleen

Déclaration temp : ABR

debut
si estVide(a) alors
retourner FAUX
sinon
si e=obtenirElement(a) alors
retourner VRAI
sinon
si e<obtenirElement(a) alors
retourner estPresent(obtenirFilsGauche(a),e)
sinon
retourner estPresent(obtenirFilsDroit(a),e)
finsi
finsi
finsi
fin

procédure inserer (E/S a : ABR, E ¢ : Element)
Déclaration temp : ABR

debut
si estVide(a) alors
a < ajouterRacine(arbreBinaireRecherche(), arbreBinaireRecherche(), e)
sinon
si e<obtenirElementRacine(a) alors
temp <— obtenirFilsGauche(a)
inserer(temp, e)
fixerFilsGauche(a, temp)
sinon
temp <— obtenirFilsDroit(a)
inserer(temp, €)
fixerFilsDroit(a, temp)
finsi
finsi
fin

procédure supprimer (E/S a: ABR; E e : Element)

Déclaration nouveauSommet : Element
temp,tempG,tempD : ABR

debut
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si non estVide(a) alors
si e < obtenirElement(a) alors
temp <— obtenirFilsGauche(a)
supprimer(temp,e)
fixerFilsGauche(a,temp)
sinon
si e > obtenirElement(a) alors
temp <— obtenirFilsDroit(a)
supprimer(temp,e)
fixerFilsDroit(a,temp)
sinon
si estVide(obtenirFilsGauche(a)) et estVide(obtenirFilsDroit(a)) alors
ArbreBinaire.supprimerRacine(a,tempG,tempD)
sinon
si estVide(obtenirFilsGauche(a)) ou estVide(obtenirFilsDroit(a)) alors
ArbreBinaire.supprimerRacine(a,tempG,tempD)
si estVide(tempG) alors
a < tempD
sinon
a + tempG
finsi
sinon
ArbreBinaire.supprimerRacine(a,tempG,tempD)
nouveauSommet <— obtenirElement(lePlusGrand(tempG))
supprimer(tempG,nouveauSommet)
a < ArbreBinaire.ajouterRacine(nouveauSommet,tempG,tempD)
finsi
finsi
finsi
finsi
finsi
fin
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Chapitre 11

Arbres AVL

Pour rappel un AVL est un ABR qui conserve I’équilibre entre tous ces fils (2 +-1 pres) apres les opérations
d’insertion et de supression.

1. Expliciter les procédures de “simple rotation”, faireSimpleRotationADroiteet faireSimple-
RotationAGauche, etde “double rotations”, faireDoubleRotationADroiteet faireDouble—
RotationAGauche.

Correction proposée:

procédure faireSimpleRotationADroite (E/S a : ABR)

| précondition(s) non(estVide(a)) et non(estVide(obtenirFilsGauche(a)))
Déclaration temp : ABR

debut
temp <— obtenirFilsGauche(a)
fixerFilsGauche(a,obtenirFilsDroit(temp))
fixerFilsDroit(temp,a)
a < temp

fin

procédure faireDoubleRotationADroite (E/S a : ABR)

| précondition(s) non(estVide(a)) et non(estVide(obtenirFilsGauche(a)))
et non(estVide(obtenirFilsDroit(obtenirFilsGauche(a)))

Déclaration temp : ABR

debut
temp <— obtenirFilsGauche(a)
faireSimpleRotationAGauche(temp)
fixerFilsGauche(a,temp)
faireSimpleRotationADroite(a)

fin

2. Montrer que les simples et doubles rotations conservent la propriété d’un ABR (en considérant que 1’arbre
ne contient pas de doublons).
Correction proposée:

— Simple rotation a droite (méme raisonnement a gauche)
69
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O A
A AN ﬁ
/A A AN

Puisque I’arbre de la figure de gauche est un ABR on sait que :

— tous les éléments de A, sont plus petit que A et B et les éléments de A, et By;
— tous les éléments de A, sont plus grands que A et plus petit que B et les éléments By ;
— tous les éléments de B, sont plus grands que B et A;

Des lors I’arbre de droite est aussi un ABR.

— Double rotation (a droite ou a gauche) : puisque ces opérations sont une combinaison de simples
rotations, 1’arbre résultat est donc aussi un ABR.

3. Expliciter la procédure d’équilibrage d’un arbre qui aurait deux sous-arbres équilibrés mais qui pourrait
ne pas €tre équilibré.
Correction proposée:

procédure equilibrer (E/S a : ABR)
debut
si hauteur(obtenirFilsGauche(a)) >hauteur(obtenirFilsDroit(a))+1 alors
si hauteur(obtenirFilsGauche(obtenirFilsGauche(a))) > hauteur(obtenirFilsDroit(obtenirFilsGauche(a)))
alors
faireSimpleRotationDroite(a)
sinon
faireDoubleRotationDroite(a)
finsi
sinon
si hauteur(obtenirFilsDroit(a))>hauteur(obtenirFilsGauche(a))+1 alors
si hauteur(obtenirFilsGauche(obtenirFilsDroit(a))) < hauteur(obtenirFilsDroit(obtenirFilsDroit(a)))
alors
faireSimpleRotationGauche(a)
sinon
faireDoubleRotationGauche(a)
finsi
finsi
finsi
fin

4. Expliciter la procédure d’insertion : inserer.
Correction proposée:

Il suffit de reprendre la procédure d’insertion vu a la section [10.2| et d’appeler equilibrer apres
chaque insertion dans le fils gauche ou droit.
Il est a noter que des conceptions d’AVL ajoutent au sein de chaque nceud la hauteur de I’arbre courant
afin de ne pas recalculer cette hauteur qui cotite O(n).

5. Expliciter la procédure de suppression : supprimer.
Correction proposée:
Il y a deux facons de résoudre ce probleme :
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(a) Reprendre I’algorithme de suppression d’un élément dans un ABR vu a la section puis rééquilibrer
apres chaque suppression

(b) Redescendre la valeur a supprimer vers une feuille par une utilisation des simples ou doubles
rotations

procédure supprimer (E/S a: ABR, E ¢ : Element)

Déclaration nouveauSommet : Element
temp,tempG,tempD : ABR

debut
si non estVide(a) alors
si e < obtenirElement(a) alors
temp < obtenirFilsGauche(a)
supprimer(temp,e)
fixerFilsGauche(a,temp)
equilibrer(a)
sinon
si e > obtenirElement(a) alors
temp <— obtenirFilsDroit(a)
supprimer(temp,e)
fixerFilsDroit(a,temp)
equilibrer(a)
sinon
si estVide(obtenirFilsGauche(a)) et estVide(obtenirFilsDroit(a)) alors
ArbreBinaire.supprimerRacine(a,tempG,tempD)
sinon
si hauteur(obtenirFilsGauche(a)) > hauteur(obtenirFilsDroit(a)) alors
si hauteur(obtenirFilsGauche(obtenirFilsGauche(a))) > hauteur(obtenirFilsDroit(
obtenirFilsGauche(a))) alors
faireSimpleRotationADroite(a)
sinon
faireDoubleRotationADroite(a)
finsi
temp <— obtenirFilsDroit(a)
supprimer(temp,e)
fixerFilsDroit(a,temp)
sinon
équivalent mais avec des simple et double rotation a gauche
finsi
finsi
finsi
finsi
finsi
fin



72

CHAPITRE 11. ARBRES AVL



Chapitre 12

Graphes

Attendus d’apprentissages disciplinaires évalués

— AN201

— CP003

— CD201

— CD801

— ANO004 :

Comprendre et appliquer des consignes algorithmiques sur un exemple

: Identifier les dépendances d’un TAD
— AN203 :
— AN204 :
— AN205 :
— AN206:

Savoir si une opération identifiée fait partie du TAD a spécifier
Formaliser des opérations d’un TAD
Formaliser les préconditions d’une opération d’un TAD

Formaliser des axiomes ou savoir définir la sémantique d’une opération d’'un TAD

: Choisir entre une fonction et une procédure
— CP004 :
— CPO005 :

Concevoir une signature (préconditions incluses)

Choisir un passage de parametre (E, S, E/S)

: Identifier et résoudre le probleme des cas non récursifs
— CD202:

Identifier et résoudre le probleme des cas récursifs

: Concevoir des graphes (matrice d’adjacence, matrice d’incidence, liste d’adjacence)
— CD804 :

Comprendre des algorithmes de recherche du plus court chemin : Dijkstra et A*

12.1 Le labyrinthe

L’ objectif de cet exercice est d’étudier le probléme du labyrinthe, c’est-a-dire créer un algorithme permettant

de trouver le chemin qui mene de I’entrée a la sortie (cf. figure [12.1]).

12.1.1 Partie publique

Un labyrinthe est composé de cases. On accede a une case a partir d’une case et d’une direction. Les

directions possibles sont Nord, Sud, Est et Ouest.

Par exemple, comme le montre la figure [I2.2] le labyrinthe précédent peut étre considéré comme étant
composé de 25 cases. La case numéro 6 est la case d’entrée. La case 20 est la case de sortie. La case 8 est

accessible depuis la case 13 avec la direction Nord.

Le TAD labyrinthe

Les opérations disponibles sur un labyrinthe sont les suivantes :
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FIGURE 12.1 — Un labyrinthe

112 .3 ,4 .5
6 |7 .89 |10
I_____a____________

FIGURE 12.2 — Un labyrinthe composé de cases

créer un labyrinthe,

obtenir la case d’entrée,

savoir si une case est la case de sortie,

obtenir une liste de directions possibles depuis une case donnée,
obtenir la case accessible depuis une case avec une direction.

. Donnez le type Direction
Correction proposée:

Type Direction = {Nord,Sud,Est,Ouest}

. Donnez le TAD Labyrinthe
Correction proposée:

Nom: Labyrinthe

Utilise: Ensemble, Direction, NaturelNonNul

Opérations: labyrinthe: NaturelNonNul x NaturelNonNul — Labyrinthe
caseDEntree: Labyrinthe — NaturelNonNul

estCaseDeSortie:  Labyrinthe x NaturelNonNul — Booleen
directionsPossibles: Labyrinthe x NaturelNonNul — Liste<Direction>

caseDestination: Labyrinthe x NaturelNonNul x Direction - NaturelNon-
Nul

Préconditions: caseDestination(l,c,d): estPresent(directionsPossibles(l,c),d)
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Algorithme du petit-poucet

Une solution pour trouver la sortie est d’utiliser le principe du petit poucet, c’est-a-dire mettre un caillou
sur les cases rencontrées.

Pour ne pas modifier le TAD Labyrinthe, plutdt que de marquer une case avec un caillou on peut ajouter une
case a un ensemble. Pour vérifier si on a déja rencontré une case, il suffit alors de vérifier si la case est présente
dans I’ensemble.

Proposer le corps de la procédure suivante qui permet de trouver le chemin de sortie (s’il existe) a partir
d’une case donnée :

procédure calculerCheminDeSortie (E 1 : Labyrinthe, caseCourante : NaturelNonNul, E/S casesVisitees :
Ensemble<NaturelNonNul>, S permetDAllerJusquALaSortie : Booleen, lesDirectionsASuivre : Liste<Direction>)

Correction proposée:

procédure calculerCheminDeSortie (E 1 : Labyrinthe, caseCourante : NaturelNonNul, E/S casesVisitees :
Ensemble<NaturelNonNul>, S permetDAllerJusquALaSortie : Booleen, lesDirectionsASuivre : Liste<Direction>)

Déclaration directions : Liste<Direction>
i : Naturel
solutionTrouvee : Booleen
caseTest : NaturelNonNul

debut
si estCaseDeSortie(caseCourante) alors
permetDAllerJusquALaSortie <— VRAI
lesDirectionsASuivre < liste()
sinon
si non estPresent(casesVisitees,caseCourante) alors
casesVisitees <— ajouter(casesVisitees,caseCourante)
directions < directionsPossibles(l,caseCourante)
permetDAllerJusquALaSortie < FAUX
i1
tant que i<longueur(directions) et non permetDAllerJusquALaSortie faire
caseTest <— caseDestination(l,obtenirElement(directions,i))
calculerCheminDeSortie(l,caseTest,cases Visitees,permetDAllerJusquALaSortie,
lesDirectionsASuivre)
si permetDAllerJusquALaSortie alors
ajouter(lesDirectionsASuivre,obtenirElement(directions,i))
finsi
1+ i+l
fintantque
sinon
permetDAllerJusquALaSortie < FAUX
finsi
finsi
fin
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12.1.2 Partie privée
Le graphe

On peut représenter un labyrinthe a I’aide d’un graphe étiqueté et valué. On considere dans ce cas que les
valeurs des noeuds du graphe sont les cases du labyrinthe et les arcs étiquetés par les directions.
Dessinez le graphe associé a I’exemple de la figure[12.3]

112 3,
IR O
4 |5 6
I_____a____
7 .8 19

FIGURE 12.3 — Un labytinthe composé de 9 cases

Correction proposée:

Représentation du graphe

Proposez la matrice d’adjascence du graphe précédent.

Correction proposée:

O 00N AW N~
<
<

12.2 Algorithme de Dijkstra

En utilisant I’algorithme de Dijkstra, donnez 1’arbre recouvrant pour le graphe présenté par la figure |12.4
depuis le sommet 1 qui permet d’obtenir tous les chemins les plus courts depuis ce sommet.
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FIGURE 12.4 — Un graphe valué positivement

Correction proposée:

12.3 Skynet d’apres Codingame©

Un arbre recouvrant

Nous avons vu en cours que 1’algorithme de Dijkstra permet d’obtenir un arbre a recouvrant depuis un
sommet s sur un graphe valué avec des nombres positifs tel que le chemin de a reliant s a tout sommet du
graphe est le plus court. Cet algorithme est le suivant :
fonction dijkstra (g : Graphe<Sommet,,ReelPositif >, s : Sommet) : Arbre<Sommet>, Dictionnaire<Sommet,
ReelPositif>

| précondition(s) sommetPresent(g,s)

Déclaration arbreRecouvrant : Arbre<Sommet>, cout : Dictionnaire< Sommet, ReelPositif >
1 : Liste<Liste<Sommet>>, ¢ : ReelPositif
sommetDeA, sommetAAjouter : Sommet

debut
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arbreRecouvrant <— arbrelnitial(s)
cout < dictionnaire()
ajouter(cout,s,0)
1 < arcsEntre ArbreEtGraphe(g,arbreRecouvrant)
tant que non estVide(l) faire
sommetDeA,sommetAAjouter,c <— arcMinimal(g,l,cout)
ajouter(cout,
sommetAAjouter,
obtenirValeur(cout,sommetDeA)+c

)

ajouterCommeFils(arbreRecouvrant,sommetDeA,sommetAAjouter)
1 < arcsEntre ArbreEtGraphe(g,arbreRecouvrant)
fintantque
retourner arbreRecouvrant, cout
fin

Tel que :
— arbrelInitial crée un arbre possédant uniquement le noeud s

— arcsEntreArbreEtGraphe permet d’obtenir la liste des arcs présents dans le graphe G, dont le
sommet source est présent dans 1’arbre mais pas le sommet destination ;

— arcMinimal permet d’identifier I’arc (sommet source, sommet destination) dont le sommet destination
est le plus proche (au sens du dictionnaire de cout) des sommets de a ainsi que le colit supplémentaire
pour I’atteindre

— ajouterCommeFils permet d’ajouter un sommet dans I’arbre en spécifiant son pere.

Signatures

Donnez les signatures des sous-programmes précédents.

Correction proposée:

— fonction arbrelnitial (s : Sommet) : Arbre<Sommet>

— fonction arcsEntre ArbreEtGraphe (g : Graphe <Sommet,ReelPositif >, a : Arbre<Sommet>) : Liste<LIste<Sommet:

— fonction arcMinimal (g : Graphe, arcs : Liste<Liste<Sommet>>, cout : Dictionnaire<Sommet, Reel-
Positif>) : Sommet, Sommet, ReelPositif

| précondition(s) non estVide(arcs)

— procédure ajouterCommeFils (E/S a : Arbre<Sommet>, E sommetPere, sommetFils : Sommet)

Algorithme

Donnez I’algorithme de la fonction sommet sAccessiblesDepuisArbre (n’oubliez pas de décomposer
le probleme si besoin).

Correction proposée:
Analyse :

— arcsEntreArbreEtGraphe : Graphe x Arbre<Sommet> — Liste<Liste<Sommet>>

— sommetsDeLArbre : Arbre<Sommet> — Liste<Sommet>
— estPresent : Liste<Sommet> x Sommet — Booleen
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Conception préliminaire :
— fonction sommetsDeLLArbre (a : Arbre<Sommet>) : Liste<Sommet>
— fonction estPresent (I : Liste<Sommet>, s : Sommet) : Booleen

Conception détaillée :
fonction sommetsDelLLArbre (a : Arbre<Sommet>) : Liste<Sommet>

Déclaration res : Liste<Sommet>

debut
res < liste()
parcourir(a, res)
retourner temp
fin
procédure parcourir (E a : Arbre<Sommet>, E/S 1 : Liste<Sommet>)
debut
si non estVide(a) alors
inserer(temp, 1,obtenirElement(a))
pour chaque f de obtenirFils(a)
parcourir(a, 1)
finpour
finsi
fin
fonction estPresent (1 : Liste<Sommet>, s : Sommet ) : Booleen

Déclaration i : Naturel

debut
11
tant que i<longueur(l) et obtenirElement(1,i)#s faire
i< i+l
fintantque
retourner i>longueur(l)
fin
fonction arcsEntre ArbreEtGraphe (g : Graphe<Sommet,ReelPositif >, a : Arbre<Sommet>) : Liste<LIste<Sommet>>

Déclaration res : Liste<Liste<Sommet>>
arc :Liste<Sommet>
sommetsDeA : Liste<Sommet>

debut
res < liste()
sommetsDeA < sommetsDelLArbre(a)
pour chaque s1 de sommetsDeA
pour chaque s2 de obtenirSommetAdjascent(g,s1)
si non estPresent(sommetsDaA,s2) alors
arc < liste()
inserer(arc,1,s1)
inserer(arc,2,s2)
inserer(res, 1,arc)
finsi
finpour
finpour
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retourner res
fin

12.3.1 Le chemin le plus court

Donnez 1’algorithme de la fonction suivante qui permet d’obtenir le chemin (une liste de sommets) le plus
court permettant d’aller d’'un sommet s1 a un sommet s2 d’un graphe valué avec des nombres positifs :

— fonction cheminPlusCourt (g :Graphe, s1,s2 : Sommet) : Liste<Sommet>

| précondition(s) sommetPresent(g,s1) et sommetPresent(g,s2)

Correction proposée:
fonction cheminPlusCourtR (a : Arbre<Sommet>, sCible : Sommet) : Liste<Sommet>

Déclaration chemin : Liste<Sommet>
fils : Sommet

debut
chemin <« liste()
si estVide(a) alors
retourner chemin
sinon
si obtenirElement(a)=sCible alors
inserer(chemin,1,sCible)
retourner chemin
sinon
i1
tant que i<longueur(obtenirFils(a)) et estVide(chemin) faire
chemin < cheminPlusCourtR (obtenirElement(obtenirFils(a),i),sCible)
si estVide(chemin) alors
14 i+l
finsi
fintantque
si non estVide(chemin) alors
inserer(chemin, 1,obtenirElement(obtenirFils(a),i))
finsi
retourner chemin
finsi
finsi
fin
fonction cheminPlusCourt (g : Graphe, s1,s2 : Sommet) : Liste<Sommet>

| précondition(s) sommetPresent(g,s1) et sommetPresent(g,s2)

Déclaration a: Arbre<Sommet>
¢ : Dictionnaire<Sommet,ReelPositif >
res : Liste<Sommet>

debut

a,c < dijkstra(g,s1)

retourner cheminPlusCourtR(a,s2,res)
fin
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12.3.2 Skynet le virus

Le site Web www.codingame . com propose des exercices ludiques de programmation. L’un des exer-
cices, < Skynet le virus > est présenté de la fagon suivante :

< Votre virus a créé une backdoor sur le réseau Skynet vous permettant d’envoyer de nouvelles instructions
au virus en temps réel. Vous décidez de passer a I’attaque active en empéchant Skynet de communiquer sur son
propre réseau interne. Le réseau Skynet est divisé en sous-réseaux. Sur chaque sous-réseau un agent Skynet a
pour tache de transmettre de I’information en se déplacant de noeud en noeud le long de liens et d’atteindre
une des passerelles qui mene vers un autre sous-réseau. Votre mission est de reprogrammer le virus pour qu’il
coupe les liens dans le but d’empécher I’agent Skynet de sortir de son sous-réseau et ainsi d’informer le hub
central de la présence de notre virus. >

Bref, I’agent Skynet (S) est sur un graphe (par exemple celui de la figure[12.5]ot les identifiants des sommets
ne sont pas indiqués) valué (avec la valeur 1 pour chaque arc) dont certains sommets sont des passerelles (P).
Le but du jeu est d’empécher I’agent skynet d’atteindre une des passerelles en supprimant le moins d’arcs du
graphe.

L’algorithme de ce jeu est proposé par la procédure skynet. L’ agent Skynet parcourt le graphe (grace
a la fonction seDeplace) de sommet en sommet a chaque itération. Pour résoudre ce probléme, il faut couper
un arc du graphe a chaque itération de facon a ce que 1’agent Skynet ne puisse pas atteindre 1’une des passerelles.
De plus il faut faire le moins de coupures possibles (le score est fonction de ce parameétre). Pour cela il suffit de
supprimer le premier arc du chemin le plus court entre I’agenSkynet et la plus proche passerelle.

Complétez I’algorithme de la procédure skynet (remplacer les ... par une ou plusieurs instructions).
procédure skynet (E/S g : Graphe<Sommet>, E agentSkynet : Sommet, S agentSkynetAAtteindPasserelle :
Booleen)

Déclaration passerelles : Liste<Sommet>
s : Sommet

debut
passerelles <— sommetsDesPasserelles(g)
tant que agentSkynetPeutAtteindreUnePasserelle(g,agentSkynet) et non estPresent(passerelles, agentSky-
net) faire

supprimerArc(g,agentSkynet,s)
agentSkynet <— seDeplace(g, agentSkynet)
fintantque
agentSkynetAAtteindPasserelle < estPresent(agentSkynet,passerelles)
fin

Correction proposée:
procédure skynet (E/S g : Graphe<Sommet>, E agentSkynet : Sommet, S agentSkynetAAtteindPasserelle :
Booleen)

Déclaration passerelles : Liste<Sommet>
s1,s2,p : Sommet
chMin,temp : Liste<Sommet>
Imin : Naturel

debut
passerelles <— sommetsDesPasserelles(g)
tant que agentSkynetPeutAtteindreUnSommet(g,agentSkynet) et non estPresent(passerelles, agentSkynet)
faire
chMin <— cheminPlusCourt(g,agentSkynet,obtenirElement(passerelles,1))
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FIGURE 12.5 — Un sous réseau Skynet

Imin <+ longueur(chMin)
pour chaque p de passerelles
ch - cheminPlusCourt(g,agentSkynet,p)
si non estVide(ch) et longueur(ch)<lmin alors
Imin < longueur(ch)
chMin < ch
finsi
finpour
s <— obtenirElement(ch,2)
supprimerArc(g,agentSkynet,s)
agentSkynet <— seDeplace(g, agentSkynet)
fintantque
agentSkynetA AtteindPasserelle <— estPresent(agentSkynet,passerelles)
fin
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Programmation dynamique

Attendus d’apprentissages disciplinaires évalués

— ANOO04 : Comprendre et appliquer des consignes algorithmiques sur un exemple
— CD701 : Définir la programmation dynamique

— CD702 : Appliquer la programmation dynamique pour des cas simples

— CD801 : Concevoir des graphes (matrice d’adjacence, matrice d’incidence, liste d’adjacence)

13.1 [L’algorithme de Floyd-Warshall

FIGURE 13.1 — Un graphe orienté valué

L’algorithme de Floyd-Warshall est un algorithme qui permet de calculer la longueur du plus court chemin
entre tous les nceuds d’un graphe orienté valué positivement.

< L’algorithme repose sur la remarque suivante : si (ao, . .., a;, . .., a,) est un plus court chemin de ag a a,
, alors (ag, ..., a;) est un plus court chemin de ag a a; , et (aj, ..., a,) un plus court chemin de a; a a,, . De plus,
comme les arétes sont valuées positivement, tout chemin contenant un cycle est nécessairement plus long que
le méme chemin sans le cycle, si bien qu’on peut se limiter a la recherche de plus courts chemins passant par
des sommets deux a deux distincts.

Floyd montre donc qu’il suffit de calculer la suite de matrices définies par :
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ME; = min(Mf7 ME + MEY. 5]
tel que MO est la matrice d’adjacence du graphe avec :
— les nceuds qui sont numérotés de 1 an (et k variede 1 an);
— Mp; =0;
— ng = +o00 s’il n’existe pas d’arc reliant 7 a j.
1. Donnez la matrice d’adjacence M° du graphe proposé par la ﬁgure (pour plus de clarté, vous pouvez
ne pas noter les 4-00).
2. Donnez les matrices M de Floyd pour k variant de 1 a 6.

3. A partir de la matrice M donnez la longueur du plus court chemin reliant le nceud 2 au noeud 4.

Correction proposée:
1.

S U W N~
[an}
oo

<
|
o TR W
w o
o
oo
o
o0 -3 A
;/ ;/

1/0 4
213 0 6 7
3 0
4 _
ME=y 0 8
5 3 3 0 11
6 116 0
M° = M*
1234 5 6
1/0 5 5 10 4
213 0 6 8 13 7
3 0
6 _
ME=y 0 14 8
5 33 0 11
6 11 6 0

3. Le longueur du chemin le plus court allant de 2 a 4 est donnée par Mg 4 =38

1. http://www.nimbustier.net/publications/djikstra/floyd.html
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13.2 La distance de Levenshtein

« La distance de Levenshtein est une distance mathématique donnant une mesure de la similarité entre deux
mots. Elle est égale au nombre minimal de lettres qu’il faut supprimer, insérer ou remplacer pour passer d’un
mot a I’autre.

On appelle distance de Levenshtein entre deux mots M et P le colit minimal pour aller de M a P en
effectuant les opérations élémentaires suivantes :

— substitution d’une lettre de M en une lettre de P ;
— ajout dans M d’une lettre de P;
— suppression d’une lettre de M.

On associe ainsi a chacune de ces opérations un cofit. Le coft est toujours égal a 1, sauf dans le cas d’une
substitution de lettres identiques, il vaut alors 0. > (inspiré de Wikipédia).

Pour calculer cette distance on utilise un matrice m de taille | P| 41 x | M|+ 1 (tel |s| représente la longueur
d’un mot s) indicée a partir de 0, tel que :

mo,; = j,j S OIM‘
mio = 1,1 € 0|P|
mi; =min(m;j—1+1,mi1;+1,mi1;1+ 1p, ;)5 € 0..|P|,j €0..|M|

tel que 1p, a7, vaut 0 si P; = M; (laieme lettre de P est égale a la jeme lettre de M), 1 sinon.
La distance de Levenshtein est alors égale a mp|,|az)-

1. Remplissez la matrice suivante pour calculer la distance de Levenshtein entre les deux mots "voiture"

et"toile".
. v o 1t t u r e

t
o
m=
i
l
e
Correction proposée:

. v 0o &t t u r e
/0 1 2 3 4 5 6 7
t11 1 2 3 3 4 5 6

m_022123456
113 3 2 1 2 3 4 5
14 4 3 2 2 3 4 5
e\5> 5 4 3 3 3 4 4

2. A quel paradigme de conception appartient cet algorithme ? Justifiez.
Correction proposée:
C’est un algorithme de programmation dynamique car :
— c’est un algorithme du type “diviser pour régner” qui calcule tout d’abord les résultats de base pour
les assembler et ainsi calculer le résultat recherché : la valeur m; ; est la distance de Levenshtein
entre les ¢ premieres lettres du mot M et les j premieres lettre du mot P.

— il utilise un tableau pour stocker des valeurs qui sont susceptibles d’étre calculées plusieurs fois.
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3. Donnez I’algorithme de la fonction qui permet de calculer la distance de Levenshtein entre deux mots.

Correction proposée:

fonction cout (c1, c2 : Caractere) : Naturel
debut

si c1=c2 alors

retourner 0

finsi

retourner 1
fin
fonction distanceLevenhstein (mot1, mot2 : Chaine de caracteres) : Naturel

| précondition(s) longeur(motl)<MAX et longueur(mot2)<MAX
Déclaration m : Tableau[0. MAX][0..MAX] de Naturel

debut
pour i <0 a longueur(mot1) faire
m[i,0] <1
finpour
pour j <0 a longueur(mot2) faire
m[0,j] <]
finpour
pour i <1 a longueur(mot] faire
pour j <1 a longueur(mot2) faire
m[i,j] ¢ min3(m[i,j-1]+1, m[i-1,j]+1, m[i-1,j-1] + cout(iemeCaractere(motl,i), iemeCarac-
tere(mot2.,j)))
finpour
finpour
retourner m[longueur(motl), longueur(mot2)]
fin
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