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6.1 Le TAD Point2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Polyligne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2.1 Analyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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Avant propos

Évaluation par attendus d’apprentissages disciplinaires

Depuis l’année universitaire 2018-2019, la validation du cours ≪ Algorithique avancée et programmation
C ≫ utilise une évaluation par attendus d’apprentissages disciplinaires (AAD). Le référentiel des AAD est dispo-
nible sur le site Moodle de l’INSA Rouen Normandie : https://moodle.insa-rouen.fr/course/
view.php?id=60&section=0.

Les exercices de ce document vous permettent de travailler ces AAD.
Quelque soit l’exercice les AAD suivants sont évalués :

— AN001 : Désigner les choses (identifiant significatif)

— AN002 : Être précis quant aux types de données utilisés

— AN003 : Connaı̂tre le rôle de l’analyse

— CP001 : Comprendre le paradigme de programmation impératif

— CP002 : Comprendre le paradigme de programmation structuré

— CP006 : Comprendre le rôle de la conception préliminaire

— CD004 : Écrire des algos avec le pseudo code utilisé à l’INSA

— CD005 : Écrire un pseudo code lisible (indentation, identifiant significatif)

— CD006 : Choisir la bonne itération

— CD007 : Utiliser les bonnes catégories de paramètres effectifs pour un passage de paramètre donnée

— CD009 : Écrire un algorithme qui résout le problème

— CD010 : Connaı̂tre le rôle de la conception détaillée

Le tableau ci dessous croise les exercices de ce livret avec les autres compétences :

Croisement AAD - exercices

AAD Exercices
AN004 : Comprendre et appliquer des consignes al-
gorithmiques sur un exemple

3.4, 7, 12, 13

AN101 : Identifier les entrées et sorties d’un
problème

1.3, 2.4, 4, 5

AN102 : Décomposer logiquement un problème 2.4, 4
AN103 : Généraliser un problème 4
AN104 : Savoir si un problème doit être décomposé 2.4
AN201 : Identifier les dépendances d’un TAD 6, 8, 12
AN203 : Savoir si une opération identifiée fait partie
du TAD à spécifier

6, 8, 12
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AAD Exercices
AN204 : Formaliser des opérations d’un TAD 6, 12
AN205 : Formaliser les préconditions d’une
opération d’un TAD

6, 8

AN206 : Formaliser des axiomes ou savoir définir la
sémantique d’une opération d’un TAD

6, 12

AN301 : Lister les collections usuelles 8
CP003 : Choisir entre une fonction et une procédure 1.3, 4, 5, 6, 8, 12
CP004 : Concevoir une signature (préconditions in-
cluses)

1.1, 1.2,1.3, 2.1, 2.2, 2.3, 3.1, 3.2, 3.3, 3.5, 4, 5, 6, 12

CP005 : Choisir un passage de paramètre (E, S, E/S) 2.2, 5, 6, 12
CD001 : Dissocier les deux rôles du développeur :
concepteur et utilisateur

6

CD002 : En tant qu’utilisateur, respecter une signa-
ture

1.1, 1.2

CD003 : Utiliser le principe d’encapsulation 6, 8
CD101 : Estimer la taille d’un problème (n) 1.4, 4
CD102 : Calculer une complexité dans le pire et le
meilleur des cas

1.4, 4, 7

CD104 : Écrire un algorithme d’une complexité
donnée

2.3, 3.2, 3.3

CD201 : Identifier et résoudre le problème des cas
non récursifs

3.1, 3.2, 3.3, 3.4, 3.5, 7, 8, 10, 12

CD202 : Identifier et résoudre le problème des cas
récursifs

3.1, 3.2, 3.3, 3.4, 3.5, 7, 8, 10, 12

CD203 : Identifier une récursivité terminale et non
terminale et ce que cela implique

3.1, 3.2, 3.3, 3.4, 3.5

CD301 : Identifier un problème qui se résout à l’aide
d’un algorithme dichotomique

2.3

CD302 : Définir l’espace de recherche d’un algorith-
mique dichotomique

1.4, 2.3

CD303 : Diviser et extraire les bornes de l’espace de
recherche d’un algorithme dichotomique (cas discret
ou continu)

1.4, 2.3

CD403 : Concevoir et utiliser des arbres (binaires,
n-aires)

10

CD501 : Comprendre les algorithmes des différents
tris et leurs complexités

7

CD601 : Concevoir des collections à l’aide de SDD 10
CD602 : Comprendre les algorithmes d’insertion et
de suppression (naı̈fs et AVL) dans un arbre binaire
de recherche

10

CD701 : Définir la programmation dynamique 13
CD702 : Appliquer la programmation dynamique
pour des cas simples

13

CD801 : Concevoir des graphes (matrice d’adja-
cence, matrice d’incidence, liste d’adjacence)

12
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AAD Exercices
CD804 : Comprendre des algorithmes de recherche
du plus court chemin : Dijkstra et A*

12

CD901 : Concevoir un type de données adapté à la
situation en terme d’espace mémoire et d’efficacité

9, 10

Pseudo code

Vous écrirez vos algorithmes avec le pseudo code utilisé dans la plupart des cours d’algorithmique de
l’INSA Rouen Normandie. Voici la syntaxe des instructions disponibles :

Type de données

Les types de base sont : Entier, Naturel, NaturelNonNul, Reel, ReelPositif, ReelPositifNonNul, Reel-
Negatif, ReelNegatifNonNul, Booleen, Caractere, Chaine de caracteres.

On définit un nouveau type de la façon suivante :
Type Identifiant nouveau type = Identifiant type existant

On déclare un tableau de la façon suivante :

— Tableau à une dimension : Tableau[borne de début. . .borne de fin] de type des éléments

— Tableau à deux dimensions : Tableau[borne de début. . .borne de fin][borne de début. . .borne de fin] de
type des éléments

— . . .

On définit une structure de la façon suivante :
Type Identifiant = Structure

identifiant attribut 1 : Type 1
. . .

finstructure

Affectation

Le symbole d’affectation est←.

Conditionnelles

Il y a trois instructions conditionnelles :

si condition alors
instruction(s)

finsi

si condition alors
instruction(s)

sinon
instruction(s)

finsi

cas où identifiant variable vaut
valeur 1:

instruction(s) 1
. . .
autre :

instruction(s)
fincas

Itérations

L’instruction de base pour les itérations déterministes est le pour :
pour identifiant←borne de début à borne de fin faire

instruction(s)
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finpour
On peut itérer sur les éléments d’une liste, d’une liste ordonnée ou d’un ensemble grâce à l’instruction pour

chaque :
pour chaque élément de collection

instruction(s)
finpour

Pour les itérations indéterministes nous avons deux instructions :

tant que condition faire
instruction(s)

fintantque

repeter
instruction(s)

jusqu’a ce que condition

Sous-programmes

Les fonctions permettent de calculer un résultat (composé d’une ou plusieurs valeurs) de manière déterministe :

fonction identifiant (paramètre(s) formel(s)) : Type(s) de retour

⌊précondition(s) expression(s) booléenne(s)

Déclaration variable(s) locale(s)

debut
instruction(s) avec au moins une fois l’instruction retourner

fin
Les procédures permettent de créer de nouvelles instructions :

procédure identifiant (paramètre(s) formel(s) avec passage de paramètres)
⌊précondition(s) expression(s) booléenne(s)

Déclaration variable(s) locale(s)

debut
instruction(s)

fin
Les passages de paramètre sont : entrée (E), sortie (S) et entrée/sortie (E/S).



Chapitre 1

Rappels : chaı̂ne de caractères, itérations,
conditionnelles

Pour certains de ces exercices on considère que l’on possède les fonctions suivantes :

— fonction longueur (uneChaine : Chaine de caracteres) : Naturel

— fonction iemeCaractere (uneChaine : Chaine de caracteres, iemePlace : Naturel) : Caractere

⌊précondition(s) 0 < iemeP lace et iemeP lace ≤ longueur(uneChaine)

1.1 estUnPrefixe

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)

— CD002 : En tant qu’utilisateur, respecter une signature

— CD006 : Choisir la bonne itération

Proposez la fonction estUnPrefixe qui permet de savoir si une première chaı̂ne de caractères est préfixe
d’une deuxième chaı̂ne de caractères (par exemple ≪ pré ≫ est un préfixe de ≪ prédire ≫ et de ≪ pré ≫).

Correction proposée:
fonction estUnPrefixe (lePrefixePotentiel,uneChaine : Chaine de caracteres) : Booleen

Déclaration i : NaturelNonNul
resultat : Booleen

debut
si longueur(lePrefixePotentiel)>longueur(uneChaine) alors

retourner FAUX
sinon

i← 1
resultat← VRAI
tant que resultat et i≤longueur(lePrefixePotentiel) faire

si iemeCaractere(uneChaine,i)=iemeCaractere(lePrefixePotentiel,i) alors
i← i+1

sinon
resultat← FAUX

finsi
9
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fintantque
retourner resultat

finsi
fin

1.2 Palindrome

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)

— CD002 : En tant qu’utilisateur, respecter une signature

— CD006 : Choisir la bonne itération

Une chaı̂ne de caractères est un palindrome si la lecture de gauche à droite et de droite à gauche est iden-
tique. Par exemple “radar”, “été”, “rotor”, etc. La chaı̂ne de caractères vide est considérée comme étant un
palindrome

Écrire une fonction qui permet de savoir si une chaı̂ne est un palindrome.

Correction proposée:

fonction estUnPalindrome (ch : Chaine de caracteres) : Booleen

Déclaration g,d : NaturelNonNul
resultat : Booleen

debut
si longueur(ch)=0 alors

retourner VRAI
sinon

resultat← VRAI
g← 1
d← longueur(ch)
tant que resultat et g<d faire

si iemeCaractere(ch,g) = iemeCaractere(ch,d) alors
g← g+1
d← d-1

sinon
resultat← FAUX

finsi
fintantque
retourner resultat

finsi
fin
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1.3 Position d’une sous-chaı̂ne

Attendus d’apprentissages disciplinaires évalués

— AN101 : Identifier les entrées et sorties d’un problème

— CP003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

Soit l’analyse descendante présentée par la figure 1.1 qui permet de rechercher la position d’une chaı̂ne de
caractères dans une autre chaı̂ne indépendemment de la casse (d’où le suffixe IC à l’opération positionSousChaineIC),
c’est-à-dire que l’on ne fait pas de distinction entre majuscule et minuscule.

positionSousChaineIC

longueur

sousChaine
sontEgalesIC

minuscule

iemeCaractere

FIGURE 1.1 – Une analyse descendante

Pour résoudre ce problème il faut pouvoir :

— obtenir la longueur d’une chaı̂ne de caractères ;

— obtenir la sous-chaı̂ne d’une chaı̂ne en précisant l’indice de départ de cette sous-chaı̂ne et sa longueur (le
premier caractère d’une sous-chaı̂ne à l’indice 1) ;

— savoir si deux chaı̂nes de caractères sont égales indépendemment de la casse.

L’opération positionSousChaineIC retournera la première position de la chaı̂ne recherchée dans la
chaı̂ne si cette première est présente, 0 sinon.

Par exemple :

— positionSousChaineIC("AbCdEfGh","cDE") retournera la valeur 3 ;

— positionSousChaineIC("AbCdEfGh","abc") retournera la valeur 1 ;

— positionSousChaineIC("AbCdEfGh","xyz") retournera la valeur 0.

1. Complétez l’analyse descendante en précisant les types de données en entrée et en sortie.

2. Donnez les signatures complètes (avec préconditions si nécessaire) des sous-programmes (fonctions ou
procédures) correspondant aux opérations de l’analyse descendante.

3. Donnez l’algorithme du sous-programme correspondant à l’opération positionSousChaineIC et
sousChaine

Correction proposée:
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positionSousChaineIC
Chaîne de caractères
Chaîne de caractères

Naturel

longueurChaîne de caractères Naturel

sousChaine
Chaîne de caractères
NaturelNonNul
Naturel

Chaîne de caractères sontEgalesIC
Chaîne de caractères
Chaîne de caractères Booléen

minusculeCaractère Caractère
iemeCaractere

Chaîne de caractères
NaturelNonNul

Caractere

Note : minuscule est sur les caractères et non chaı̂ne de caractères sinon il y aurait une autre sous boite. . .
fonction positionSousChaineIC (chaine, chaineARechercher : Chaine de caracteres) : Naturel

⌊précondition(s) longueur(chaineARechercher)>0
longueur(chaineARechercher)≤longueur(chaine)

fonction longueur (chaine : Chaine de caracteres) : Naturel
fonction sousChaine (chaine : Chaine de caracteres, pos : NaturelNonNul, long : Naturel) : Chaine de
caracteres

⌊précondition(s) long≤longueur(chaine)-position+1

fonction sontEgalesIC (chaine1, chaine2 : Chaine de caracteres) : Booleen
fonction minuscule (c : Caractere) : Caractere
fonction positionSousChaineIC (chaine, chaineARechercher : Chaine de caracteres) : Naturel

⌊précondition(s) longueur(chaineARechercher)>0
longueur(chaineARechercher)≤longueur(chaine)

Déclaration i : Naturel

debut
i← 1
tant que i+longueur(chaineARechercher)-1≤longueur(chaine) et non sontEgalesIC(sousChaine(chaine,i,
longueur(chaineARechercher)),chaineARechercher) faire

i← i+1
fintantque
si i+longueur(chaineARechercher)>longueur(chaine)+1 alors

i← 0
finsi
retourner i

fin
fonction sousChaine (chaine : Chaine de caracteres, pos : NaturelNonNul, long : Naturel) : Chaine de
caracteres

⌊précondition(s) long≤longueur(chaine)-pos+1

Déclaration resultat : Chaine de caracteres, i : Naturel

debut
resultat← ””
pour i←0 à long-1 faire

resultat← resultat + iemeCaractere(chaine,pos+i)
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finpour
retourner resultat

fin

1.4 Racine carrée d’un nombre : recherche par dichotomie

Attendus d’apprentissages disciplinaires évalués

— CD302 : Définir l’espace de recherche d’un algorithmique dichotomique

— CD303 : Diviser et extraire les bornes de l’espace de recherche d’un algorithme dichotomique
(cas discret ou continu)

— CD101 : Estimer la taille d’un problème (n)

— CD102 : Calculer une complexité dans le pire et le meilleur des cas

L’objectif de cet exercice est de rechercher une valeur approchée de la racine carrée d’un nombre réel positif
x (x ≥ 1) à ϵ près à l’aide d’un algorithme dichotomique.

Pour rappel :

≪ La dichotomie (“couper en deux” en grec) est, en algorithmique, un processus itératif [..]
de recherche où, à chaque étape, on coupe en deux parties (pas forcément égales) un espace de
recherche qui devient restreint à l’une de ces deux parties.

On suppose bien sûr qu’il existe un test relativement simple permettant à chaque étape de
déterminer l’une des deux parties dans laquelle se trouve une solution. Pour optimiser le nombre
d’itérations nécessaires, on s’arrangera pour choisir à chaque étape deux parties sensiblement de
la même “taille” (pour un concept de “taille” approprié au problème), le nombre total d’itérations
nécessaires à la complétion de l’algorithme étant alors logarithmique en la taille totale du problème
initial. ≫ (wikipédia).

1. Définir ≪ l’espace de recherche ≫ pour le problème de la recherche d’une racine carrée.

2. Quelle condition booléenne permet de savoir si il doit y avoir une nouvelle itération?

3. Quel test va vous permettre de savoir dans laquelle des deux parties se trouve la solution?

4. Proposez l’algorithme de la fonction suivante (on suppose que x et epsilon sont positifs et que x est
supérieur ou égal à 1) :

— fonction racineCarree (x,epsilon : ReelPositif) : ReelPositif
5. Quelle est la complexité de votre algorithme?

Correction proposée:

1. La taille de l’espace de recherche est : (d− g)/ϵ.

2. d− g > ϵ

3. m2 plus petit ou plus grand que x

4.
fonction racineCarree (x,ϵ : ReelPositif) : ReelPositif

Déclaration g,d,m : ReelPositif
debut

g← 0
d← x
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tant que d-g> ϵ faire
m← (g+d)/2
si m*m<x alors

g← m
sinon

d← m
finsi

fintantque
retourner g

fin
5. La taille du problème est définie par la valeur (d − g)/ϵ. Le nombre d’itérations est donc de log2((d −

g)/ϵ).
La représentation des flottants utilise un nombre fixe de bits (souvent la norme IEEE 754), Il y a donc
une borne MAX. De plus chaque opération sur les flottants (comparaison, multiplication, division par 2)
est dans ce cas supposée en temps constant, cet algorithme est O(log2((d− g)/ϵ).



Chapitre 2

Rappels : les tableaux

Dans certains exercices qui vont suivre, le tableau d’entiers t est défini par [1..MAX] et il contient n
éléments significatifs (n ≤MAX).

2.1 Plus petit élément

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)

Écrire une fonction, minTableau, qui à partir d’un tableau d’entiers t non trié de n éléments significatifs
retourne le plus petit élément du tableau.

Correction proposée:

fonction minTableau (t : Tableau[1..MAX] d’Entier, n : NaturelNonNul) : Entier

⌊précondition(s) n≤MAX

Déclaration i : Naturel,
min : Entier

debut
min← t[1]
pour i←2 à n faire

si t[i]<min alors
min← t[i]

finsi
finpour
retourner min

fin
15
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2.2 Sous-séquences croissantes

Attendus d’apprentissages disciplinaires évalués

— CP003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

— CP005 : Choisir un passage de paramètre (E, S, E/S)

— CD005 : Écrire un pseudo code lisible (indentation, identifiant significatif)

Écrire un sous-programme sousSequencesCroissantes, qui à partir d’un tableau d’entiers t de n
éléments, fournit le nombre de sous-séquences strictement croissantes de ce tableau, ainsi que les indices de
début et de fin de la plus grande sous-séquence. Exemple : t un tableau de 15 éléments : 1, 2, 5, 3, 12, 25, 13
, 8, 4, 7, 24, 28, 32, 11, 14. Les séquences strictement croissantes sont : < 1, 2, 5 >,< 3, 12, 25 >,< 13 >,<
8 >,< 4, 7, 24, 28, 32 >,< 11, 14 >. Le nombre de sous-séquences est : 6 et la plus grande sous-séquence
est : < 4, 7, 24, 28, 32 >. Donc dans ce cas les trois valeurs calculées seraient 6, 9 et 13.

Correction proposée:
fonction sousSequencesCroissantes (t :Tableau[1..MAX] d’Entier, n : NaturelNonNul) : NaturelNonNul,
NaturelNonNul, NaturelNonNul
⌊précondition(s) n≤MAX

Déclaration i :Naturel
debutSequenceCourante, nbSsSequences, debutDeLaPlusGrandeSsSequence, finDeLaPlusGran-
deSsSequence : NaturelNonNul

debut
si n>1 alors

nbSsSequences← 1
debutDeLaPlusGrandeSsSequence← 1
finDeLaPlusGrandeSsSequence← 1
debutSequenceCourante← 1
pour i←1 à n-1 faire

si t[i]>t[i+1] alors
nbSsSequences← nbSsSequences+1
si i-debutSequenceCourante>finDeLaPlusGrandeSsSequence-debutDeLaPlusGrandeSsSequence
alors

debutDeLaPlusGrandeSsSequence← debutSequenceCourante
finDeLaPlusGrandeSsSequence← i

finsi
debutSequenceCourante← i+1

finsi
finpour
si n-debutSequenceCourante>finDeLaPlusGrandeSsSequence-debutDeLaPlusGrandeSsSequence alors

debutDeLaPlusGrandeSsSequence← debutSequenceCourante
finDeLaPlusGrandeSsSequence← n

finsi
retourner nbSsSequences, debutDeLaPlusGrandeSsSequence, finDeLaPlusGrandeSsSequence

sinon
retourner 1,1,1



2.3. RECHERCHE D’UN ÉLÉMENT EN O(log(n)) 17

finsi
fin

2.3 Recherche d’un élément en O(log(n))

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)

— CD104 : Écrire un algorithme d’une complexité donnée

— CD301 : Identifier un problème qui se résout à l’aide d’un algorithme dichotomique

— CD302 : Définir l’espace de recherche d’un algorithmique dichotomique

— CD303 : Diviser et extraire les bornes de l’espace de recherche d’un algorithme dichotomique
(cas discret ou continu)

Écrire une fonction, recherche, qui détermine le plus petit indice d’un élément, (dont on est sûr de
l’existence) dans un tableau d’entiers t trié dans l’ordre croissant de n éléments en O(log(n)). Il peut y avoir
des doubles (ou plus) dans le tableau.

Correction proposée:

fonction recherche (t : Tableau[1..MAX] d’Entier, n : NaturelNonNul, element : Entier) : NaturelNonNul

⌊précondition(s) n≤MAX
∃ 1 ≤ i ≤ n tel que t[i] = element
estTrieEnOrdreCroissant(t)

Déclaration g,d,m : Naturel

debut
g← 1
d← n
tant que g ̸= d faire

m← (g + d) div 2
si t[m] ≥ element alors

d← m
sinon

g← m + 1
finsi

fintantque
retourner d

fin

Quelques remarques sur les algorithmes dichotomiques sur du discret :

— On sort du tant quand les deux indices se croisent

— Il faut savoir quand ≪ garder ≫ l’élément du milieu (et donc quand l’exclure, sinon il y a un risque de
boucle infinie). Ici, comme on cherche le plus petit indice de l’élément recherché, lorsque t[m] est cet
élément, il faut le garder (c’est peut être lui qui est recherché).
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2.4 Lissage de courbe

Attendus d’apprentissages disciplinaires évalués

— AN101 : Identifier les entrées et sorties d’un problème

— AN102 : Décomposer logiquement un problème

— AN104 : Savoir si un problème doit être décomposé

L’objectif de cet exercice est de développer un ≪ filtre non causal ≫, c’est-à-dire une fonction qui lisse
un signal en utilisant une fenêtre glissante pour moyenner les valeurs (Cf. figure 2.1). Pour les premières et
dernières valeurs, seules les valeurs dans la fenêtre sont prises en compte.

2 1 4 5 3 6 3 7

1.5 2.3 3.3 4 4.7

2 1 4 5 3 6 3 7

1.5 2.3 3.3 4 4.7 4 5.3 5

2 1 4 5 3 6 3 7

1.5

FIGURE 2.1 – Lissage d’un signal avec une fenêtre de taille 3

Soit le type Signal :
Type Signal = Structure

donnees : Tableau[1..MAX] de Reel
nbDonnees : Naturel

finstructure
Après avoir fait une analyse descendante du problème, proposez l’algorithme de la fonction filtreNonCausal

avec la signature suivante :

— fonction filtreNonCausal (signalNonLisse : Signal, tailleFenetre : NaturelNonNul) : Signal

⌊précondition(s) impair(tailleFenetre)

Correction proposée:
Analyse descencante :

— filtreNonCausal : Signal × Naturel ↛ Signal

— min : Naturel× Entier→ Entier
— max : Naturel× Entier→ Entier
— moyenne : Signal × Naturel× Naturel ↛ Reel

— somme : Signal × Naturel× Naturel ↛ Reel
Algorithmes :

fonction somme (unSignal : Signal, debut, fin : NaturelNonNul) : Reel
⌊précondition(s) debut≤ fin

fin≤ unSignal.nbDonnees
unSignal.nbDonnees≤ MAX

Déclaration resultat : Reel
i : Naturel
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debut
resultat← 0
pour i←debut à fin faire

resultat← resultat+ unSignal.donnes[i]
finpour
retourner resultat

fin
fonction moyenne (unSignal : Signal, debut, fin : NaturelNonNul) : Reel
⌊précondition(s) debut≤ fin

fin≤ unSignal.nbDonnees
unSignal.nbDonnees≤ MAX

debut
retourner somme(unSignal,debut,fin)/(fin-debut+1)

fin
fonction filtreNonCausal (unSignal : Signal, tailleFenetre : NaturelNonNul) : Signal

⌊précondition(s) impaire(tailleFenetre)
unSignal.nbDonnees≤ MAX

Déclaration resultat : Signal
i : Naturel

debut
resultat.nbDonnees← unSignal.nbDonnees
pour i←1 à resultat.nbDonnees faire

resultat.donnes[i]← moyenne(unSignal,entierEnNaturel(max(1,i-tailleFenetre div 2)),
entierEnNaturel(min(unSignal.nbDonnees,i+tailleFenetre div 2)))

finpour
retourner resultat

fin
Il est noté qu’il faut explicitement utiliser la fonction de transtypage entierEnNaturel qui possède la
signature suivante :

— fonction entierEnNaturel (e : Entier) : Naturel
⌊précondition(s) e≥0
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Chapitre 3

Rappels : récursivité

3.1 Palindrome

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)

— CD201 : Identifier et résoudre le problème des cas non récursifs

— CD202 : Identifier et résoudre le problème des cas récursifs

— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

Écrire une fonction qui permet de savoir si une chaı̂ne est un palindrome. Est-ce un algorithme récursif
terminal ou non-terminal ?

Correction proposée:
fonction estUnPalindrome (uneChaine : Chaine de caracteres) : Booleen
debut

si longueur(uneChaine)=0 ou longueur(uneChaine)=1 alors
retourner VRAI

sinon
si iemeCaractere(uneChaine,1)̸=iemeCaractere(uneChaine,longueur(uneChaine)) alors

retourner FAUX
sinon

retourner estUnPalindrome(sousChaine(uneChaine,2,longueur(uneChaine)-2))
finsi

finsi
fin

Le problème est que c’est algorithme est en O(n2). Pour obtenir un algorithme en O(n), il faut utiliser une
fonction privée prenant en paramètre le chaine et les indices :
fonction estUnPalindrome (uneChaine : Chaine de caracteres) : Booleen
debut

retourner estUnPalindromeR(uneChaine,1,longueur(uneChaine)-1)
fin
fonction estUnPalindromeR (uneChaine : Chaine de caracteres, debut, fin : NaturelNonNul) : Booleen
debut

si fin≤debut alors
retourner VRAI

21
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sinon
si iemeCaractere(uneChaine,debut)̸=iemeCaractere(uneChaine,fin) alors

retourner FAUX
sinon

retourner estUnPalindromeR(sousChaine(uneChaine,debut+1,fin-1))
finsi

finsi
fin

Il est noté que ces deux algorithmes sont des algorithmes récursif terminal.

3.2 Puissance d’un nombre

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)

— CD104 : Écrire un algorithme d’une complexité donnée

— CD201 : Identifier et résoudre le problème des cas non récursifs

— CD202 : Identifier et résoudre le problème des cas récursifs

— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

Écrire une fonction récursive, puissance, qui élève un réel a à la puissance nb (naturel) en Ω(n).
Correction proposée:

fonction puissance (a : Reel, nb : Naturel) : Reel

Déclaration temp : Reel

debut
si nb = 0 alors

retourner 1
sinon

si estPair(nb) alors
temp← puissance(a,nb div 2)
retourner temp*temp

sinon
retourner a*puissance(a,nb-1)

finsi
finsi

fin

Pour rappel, la taille du problème n ici est le nombre de bits qu’il faut pour représenter nb. Donc nb vaut
au maximum 2n. Dans le meilleur des cas l’algorithme divise nb par 2, le nombre d’itérations dans le meilleur
des cas est donc de log2(nb) et donc la complexité de cet algorithme est en Ø(n ∗ log2(n)).

Il est noté que cet algorithme n’est pas une récursivité terminale.
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3.3 Recherche du zéro d’une fonction en O(n)

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)

— CD104 : Écrire un algorithme d’une complexité donnée

— CD201 : Identifier et résoudre le problème des cas non récursifs

— CD202 : Identifier et résoudre le problème des cas récursifs

— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

Écrire une fonction récursive, zeroFonction, qui calcule le zéro d’une fonction réelle f(x) sur l’inter-
valle réel [a, b], avec une précision ϵ. La fonction f est strictement monotone sur [a, b].

Correction proposée:
fonction zeroFonction (a,b : Reel, ϵ : ReelPositif, f : FonctionRDansR) : Reel
⌊précondition(s) a ≤ b

strictementMonotone(f,a,b)

Déclaration m : Reel

debut
m← (a + b) / 2
si (b - a)≤ ϵ alors

retourner m
sinon

si memeSigne(f(a),f(m)) alors
retourner zeroFonction(m, b, ϵ,f)

sinon
retourner zeroFonction(a, m, ϵ,f)

finsi
finsi

fin
La taille du problème est égal aux nombre de bits qu’il faut pour représenter ce (b − a)/ϵ. Si on arrondit

ce nombre au naturel le plus proche N , et si n représente le nombre de bits pour représenter N , N vaut au
maximum 2n − 1. Comme le nombre d’itérations est de log2(N) (algorithmique dichotomique), la complexité
de cet algorithme est en O(n) et en Ω(1) (dans le cas où il n’y aucune itération).

3.4 Dessin récursif

Attendus d’apprentissages disciplinaires évalués

— AN004 : Comprendre et appliquer des consignes algorithmiques sur un exemple

— CD201 : Identifier et résoudre le problème des cas non récursifs

— CD202 : Identifier et résoudre le problème des cas récursifs

— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

Supposons que la procédure suivante permette de dessiner un carré sur un graphique (variable de type
Graphique) :
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— procédure carre (E/S g : Graphique,E x,y,cote : Reel)

L’objectif est de concevoir une procédure carres qui permet de dessiner sur un graphique des dessins
récursifs tels que présentés par la figure 3.1. La signature de cette procédure est :

— procédure carres (E/S g : Graphique,E x,y,cote : Reel, n : NaturelNonNul)

100 120 140 160 180 200

100

120

140

160

180

200

(a) carres(g, 100, 100, 100, 1)

0 50 100 150 200 250 300
0

50

100

150

200

250

300

(b) carres(g, 100, 100, 100, 3)

0 50 100 150 200 250 300
0

50

100

150

200

250

300

(c) carres(g, 100, 100, 100, 4)

FIGURE 3.1 – Résultats de différents appels de la procédure carres

1. Dessinez le résultat de l’exécution de carres(g, 100, 100, 100, 2).

2. Donnez l’algorithme de la procédure carres.

Correction proposée:

1. 50 100 150 200 250

50

100

150

200

250

2. Algorithme

procédure carres (E/S g : Graphique,E x,y,cote : Reel, n : NaturelNonNul)
debut

carre(g,x,y,cote)
si n>1 alors

carres(g,x-cote/2,y,cote/2,n-1)
carres(g,x,y+cote,cote/2,n-1)
carres(g,x+cote,y+cote/2,cote/2,n-1)
carres(g,x+cote/2,y-cote/2,cote/2,n-1)

finsi
fin

NB : Cet exercice est inspiré de http://www-fourier.ujf-grenoble.fr/˜parisse/giac/doc/
fr/casrouge/casrouge018.html.

http://www-fourier.ujf-grenoble.fr/~parisse/giac/doc/fr/casrouge/casrouge018.html
http://www-fourier.ujf-grenoble.fr/~parisse/giac/doc/fr/casrouge/casrouge018.html
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3.5 Inversion d’un tableau

Attendus d’apprentissages disciplinaires évalués

— CP004 : Concevoir une signature (préconditions incluses)

— CD201 : Identifier et résoudre le problème des cas non récursifs

— CD202 : Identifier et résoudre le problème des cas récursifs

— CD203 : Identifier une récursivité terminale et non terminale et ce que cela implique

Soit un tableau d’entiers t. Écrire une procédure, inverserTableau, qui change de place les éléments
de ce tableau de telle façon que le nouveau tableau t soit une sorte de ”miroir” de l’ancien.

Exemple : 1 2 4 6→ 6 4 2 1

Correction proposée:
procédure inverserTableauR (E/S t : Tableau[1..MAX] d’Entier, E debut, fin : Naturel)
debut

si debut < fin alors
echanger(t[debut], t[fin])
si debut<fin-1 alors

inverserTableauR(t, debut+1, fin-1)
finsi

finsi
fin
procédure inverserTableau (E/S t : Tableau[1..MAX] d’Entier, E n : Naturel)
debut

inverserTableauR(t,1,n)
fin
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Chapitre 4

Représentation d’un naturel

Attendus d’apprentissages disciplinaires évalués

— AN101 : Identifier les entrées et sorties d’un problème

— AN102 : Décomposer logiquement un problème

— AN103 : Généraliser un problème

— AN104 : Savoir si un problème doit être décomposé

— CP003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

— CD001 : Dissocier les deux rôles du développeur : concepteur et utilisateur

— CD002 : En tant qu’utilisateur, respecter une signature

L’objectif de cet exercice est de concevoir quatre fonctions permettant de représenter un naturel en chaı̂ne
de caractères telles que la première fonction donnera une représentation binaire, la deuxième une représentation
octale, la troisième une représentation décimale et la dernière une représentation hexadécimale.

4.1 Analyse

L’analyse de ce problème nous indique que ces quatre fonctions sont des cas particuliers de représentation
d’un naturel en chaı̂ne de caractères dans une base donnée. De plus pour construire la chaı̂ne de caractères
résultat, il faut être capable de concaténer des caractères représentant des chiffres pour une base donnée.

Proposez l’analyse descendante de ce problème.

Correction proposée:
27
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representation
BinaireNaturel Chaine

representation
OctaleNaturel Chaine

representation
DecimaleNaturel Chaine

representation
HexadecimaleNaturel Chaine

representation
NAireNaturel

2..36
Chaine

naturel
EnChiffre0..35

2..36
Caractere

4.2 Conception préliminaire

Donnez les signatures des fonctions ou procédures identifiées précédemment.

Correction proposée:

— fonction naturelEnChiffre (nombre : 0..35, base : 2..36) : Caractere
⌊précondition(s) nombre < base

— fonction representationNAire (nombre : Naturel, base : 2..36) : Chaine de caracteres
— fonction representationBinaire (n : Naturel) : Chaine de caracteres
— fonction representationOctale (n : Naturel) : Chaine de caracteres
— fonction representationDecimale (n : Naturel) : Chaine de caracteres
— fonction representationHexadecimale (n : Naturel) : Chaine de caracteres

4.3 Conception détaillée

Donnez les algorithmes de ces fonctions ou procédures

Correction proposée:
fonction naturelEnChiffre (nombre : 0..35, base : 2..36) : Caractere
⌊précondition(s) nombre < base

Déclaration chiffre : Caractere,
i : Naturel

debut
chiffre← ’0’
pour i←1 à nombre faire
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si chiffre = ’9’ alors
chiffre← ’A’

sinon
chiffre← succ(chiffre)

finsi
finpour
retourner chiffre

fin

fonction representationNAire (nombre : Naturel, base : 2..36) : Chaine de caracteres
Déclaration representation : Chaine de caracteres

debut
representation← ””
repeter

representation← naturelEnChiffre(nombre mod base, base) + representation
nombre← nombre div base

jusqu’a ce que nombre = 0
retourner representation

fin

fonction representationBinaire (n : Naturel) : Chaine de caracteres
debut

retourner representationNAire(n,2)
fin

fonction representationOctale (n : Naturel) : Chaine de caracteres
debut

retourner representationNAire(n,8)
fin

fonction representationDecimale (n : Naturel) : Chaine de caracteres
debut

retourner representationNAire(n,10)
fin

fonction representationHexadecimale (n : Naturel) : Chaine de caracteres
debut

retourner representationNAire(n,16)
fin
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Chapitre 5

Calculatrice

Attendus d’apprentissages disciplinaires évalués

— AN101 : Identifier les entrées et sorties d’un problème

— CP003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

— CP005 : Choisir un passage de paramètre (E, S, E/S)

L’objectif de cet exercice est d’écrire un sous-programme, calculer, qui permet de calculer la valeur d’une
une expression arithmétique simple (opérande gauche positive, opérateur, opérande droite positive) à partir
d’une chaı̂ne de caractères (par exemple ”875+47.5”). Ce sous-programme, outre ce résultat, permettra de savoir
si la chaı̂ne est réellement une expression arithmétique (Conseil : Créer des procédures/fonctions permettant de
reconnaı̂tre des opérandes et opérateurs) et si elle est logiquement valide

On considère posséder le type Operateur défini de la façon suivante :

— Type Operateur = {Addition, Soustraction, Multiplication, Division}

5.1 Analyse

Remplissez l’analyse descendante présentée par la figure 5.1 sachant que la reconnaissance d’une entité
(opérateur, opérande, etc.) dans la chaı̂ne de caractères commencent à une certaine position et que la reconnais-
sance peut échouer.

calculer...
...
...
...

reconnaitre
Operateur

...

...
...
...
...

reconnaitre
Operande

...

...
...
...
...

reconnaitreS
uiteChiffres...

...

...

...

...

reconnaitre
Virugle

...

...
...
... chaineEnNaturel... ...

...

xPuissanceN...
...

...

estUnChiffre... ...

FIGURE 5.1 – Analyse descendante d’une calculatrice simple
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Correction proposée:

Notes, remarques pour l’enseignant et points à vérifier

— La difficulté ici est d’avoir une analyse cohérente du problème

calculerChaine
Reel
Booléen
Booléen

reconnaitre
Operateur

Chaine
NaturelNonNul

Operateur
NaturelNonNul
Booleen

reconnaitre
Operande

Chaine
NaturelNonNul

Reel
NaturelNonNul
Booleen

reconnaitre
SuiteChiffreChaine

NaturelNonNul

Chaine
NaturelNonNul
Booleen

reconnaitre
Virugle

Chaine
NaturelNonNul

NaturelNonNul
Booleen chaineEnNaturelChaine Naturel

Booleen

xPuissanceNReel
Entier

Reel

estUnChiffreCaractere Booleen

5.2 Conception préliminaire

Donnez les signatures des fonctions ou procédures correspondant aux opérations de l’analyse précédente.

Correction proposée:

— fonction calculer (leTexte : Chaine de caracteres) : Reel, Booleen, Booleen
⌊précondition(s) longueur(leTexte) > 0

— procédure reconnaitreOperateur (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul, S
estUnOperateur : Booleen, lOperateur : Operateur)
⌊précondition(s) debut < longueur(leTexte)

— procédure reconnaitreOperande (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul, S
estUneOperande : Booleen, leReel : Reel)
⌊précondition(s) debut ≤ longueur(leTexte)

— procédure reconnaitreSuiteChiffres (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul,
S suiteChiffres : Chaine de caracteres, estUneSuiteDeChiffres : Booleen)
⌊précondition(s) position ≤ longueur(leTexte)

— procédure reconnaitreVirgule (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul, S
estUneVirgule : Booleen)
⌊précondition(s) position ≤ longueur(leTexte)
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— fonction estUnChiffre (c : Caractere) : Booleen
— fonction XPuissanceN (x : Reel, n : Entier) : Reel
— fonction chaineEnNaturel (c : Chaine de caracteres) : Naturel, Booleen

5.3 Conception détaillée

Donnez les algorithmes des fonctions et procédures identifées.

Correction proposée:

Notes, remarques pour l’enseignant et points à vérifier

— Montrer qu’une fois la conception préliminaire terminée, on peut répartir la conception détaillée
entre plusieurs personnes

procédure reconnaitreOperateur (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul, S estU-
nOperateur : Booleen, lOperateur : Operateur, )
⌊précondition(s) debut ≤ longueur(leTexte)

debut
estUnOperateur← VRAI
position← position+1
cas où iemeCaractere(leTexte,position) vaut

’+’:
lOperateur← Addition

’-’:
lOperateur← Soustraction

’*’:
lOperateur←Multiplication

’/’:
lOperateur← Division

autre :
estUnOperateur← FAUX
position← position-1

fincas
fin

fonction estUnChiffre (c : Caractere) : Booleen
debut

retourner c≥’0’ et c≤’9’
fin

procédure reconnaitreSuiteChiffres (E leTexte : Chaine de caracteres, E/S position : NaturelNonNul, S sui-
teChiffres : Chaine de caracteres, estUneSuiteDeChiffres : Booleen)
⌊précondition(s) position ≤ longueur(leTexte)

debut
suiteChiffres← ””
estUneSuiteDeChiffres← FAUX
tant que position ≤ longueur(texte) et estUnChiffre(iemeCaractere (leTexte, position)) faire
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suiteChiffres← suiteChiffres + iemeCaractere (leTexte, position)
position← position + 1

fintantque
si suiteChiffres̸=”” alors

estUneSuiteDeChiffres← VRAI
finsi

fin

procédure reconnaitreOperande (E leTexte : Chaine de caracteres, E/S position : Naturel, S estUneOpe-
rande : Booleen, leReel : Reel, prochainDebut : NaturelNonNul)
⌊précondition(s) debut ≤ longueur(leTexte)

Déclaration chPartieEntiere, chPartieDecimale : Chaine de caracteres
partieEntiere, partieDecimale : Naturel
ok, ilYAUneVirgule : Booleen

debut
reconnaitreSuiteChiffres(leTexte,position,chPartieEntiere,ok)
si ok alors

chaineEnNaturel(chPartieEntiere,partieEntiere,ok)
reconnaitreVirgule(leTexte,position,ilYAUneVirgule)
si ilYAUneVirgule alors

reconnaitreSuiteChiffres(leTexte,position,chPartieDecimale,ok)
si ok alors

chaineEnNaturel(chPartieDecimale,partieDecimale,ok)
leReel← partieEntiere + partieDecimale / XPuissanceN(10,longueur(chPartieDecimale))

finsi
sinon

leReel← naturelEnReel(partieEntiere)
finsi

finsi
estUneOperande← ok

fin

fonction calculer (leTexte : Chaine de caracteres) : Reel, Booleen, Booleen
⌊précondition(s) longueur(leTexte) > 0

Déclaration i : Naturel
valeur, operandeG, operandeD : Reel
operateur : Operateur
toujoursValide, estUneExpressionSemantiquementCorrecte : Booleen

debut
valeur← 0
i← 1
reconnaitreOperande(leTexte,i, toujoursValide, operandeG)
si toujoursValide et i<longueur(leTexte) alors

reconnaitreOperateur(leTexte, i, toujoursValide, operateur)
si toujoursValide et i≤ longueur(leTexte) alors

reconnaitreOperande(leTexte, i, toujoursValide, operandeD)
si toujoursValide et i = longueur(leTexte) + 1 alors

estUneExpressionSemantiquementCorrecte← VRAI
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cas où operateur vaut
Addition:

valeur← operandeG + operandeD
Soustraction:

valeur← operandeG - operandeD
Multiplication:

valeur← operandeG * operandeD
Division:

si operandeD ̸= 0 alors
valeur← operandeG / operandeD

sinon
estUneExpressionSemantiquementCorrecte← FAUX

finsi
fincas
retourner valeur, VRAI, estUneExpressionSemantiquementCorrecte

finsi
finsi

finsi
retourner 0, FAUX, FAUX

fin
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Chapitre 6

Un peu de géométrie

Correction proposée:

Notes, remarques pour l’enseignant et points à vérifier

— Manipuler les TAD

— Appliquer le principe d’encapsulation

Attendus d’apprentissages disciplinaires évalués

— AN201 : Identifier les dépendances d’un TAD

— AN203 : Savoir si une opération identifiée fait partie du TAD à spécifier

— AN204 : Formaliser des opérations d’un TAD

— AN205 : Formaliser les préconditions d’une opération d’un TAD

— AN206 : Formaliser des axiomes ou savoir définir la sémantique d’une opération d’un TAD

— CP003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

— CP005 : Choisir un passage de paramètre (E, S, E/S)

— CD003 : Utiliser le principe d’encapsulation

6.1 Le TAD Point2D

Soit le TAD Point2D définit de la façon suivante :

Nom: Point2D
Utilise: Reel
Opérations: point2D: Reel × Reel→ Point2D

obtenirX: Point2D→ Reel
obtenirY: Point2D→ Reel
distanceEuclidienne: Point2D × Point2D→ ReelPositif
translater: Point2D × Point2D→ Point2D
faireRotation: Point2D × Point2D × Reel→ Point2D

37
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1. Analyse : Donnez la partie axiomes pour ce TAD (sauf pour l’opération faireRotation)
Correction proposée:

Axiomes: - obtenirX(point2D(x, y)) = x
- obtenirY (point2D(x, y)) = y
- distanceEuclidienne(point2D(x1, y1), point2D(x2, y2)) =

√
(x2 − x1)2 + (y2 − y1)2

- translater(point2D(x1, y1), point2D(x2, y2)) = point2D(x1 + x2, y1 + y2)

Remarque(s) :

— il ne sert à rien d’ajouter trop d’axiomes, au risque d’avoir un TAD inconsistant ou de proposer
des tautologies.
Par exemple l’axiome point2D(obtenirX(p1), obtenirY (p1)) = p1 est une tautologie.
En effet si on remplace p1 par point2D(x, y), on a alors :

point2D(obtenirX(point2D(x, y)), obtenirY (point2D(x, y))) = point2D(x, y)

Soit

point2D(x, y) = point2D(x, y)

qui est toujours vrai.

2. Conception préliminaire : Donnez les signatures des fonctions et procédures des opérations de ce TAD
Correction proposée:

— fonction point2D (x,y : Reel) : Point2D
— fonction obtenirX (p : Point2D) : Reel
— fonction obtenirY (p : Point2D) : Reel
— fonction distanceEuclidienne (p1,p2 : Point2D) : ReelPositif
— procédure translater (E/S p : Point2D,E vecteur : Point2D)
— procédure realiserRotation (E/S p : Point2D,E centre : Point2D, angleEnDegre : Reel)

Remarque(s) :

— Il est important de choisir de bons identifiants pour les paramètres formels. Ici il pourrait y
avoir ambiguı̈té sur l’unité du paramètre formel de l’angle de la rotation.

6.2 Polyligne

≪ Une ligne polygonale, ou ligne brisée (on utilise aussi parfois polyligne par traduction de l’anglais poly-
line) est une figure géométrique formée d’une suite de segments, la seconde extrémité de chacun d’entre eux
étant la première du suivant.[. . .] Un polygone est une ligne polygonale fermée. ≫ (Wikipédia)

La figure 6.1 présente deux polylignes composées de 5 points.
De cette définition nous pouvons faire les constats suivants :

— Tous les points d’une polyligne sont distincts ;

— Une polyligne est constituée d’au moins deux points ;
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(a) polyligne ouverte (b) polyligne fermée

FIGURE 6.1 – Deux polylignes

— On peut obtenir le nombre de points d’une polyligne ;

— Une polyligne est ouverte ou fermée (qu’elle soit ouverte ou fermée ne change pas le nombre de points :
dans le cas où elle est fermée, on considère qu’il a une ligne entre le dernier et le premier point) ;

— On peut insérer, supprimer des points à une polyligne (par exemple la figure 6.2 présente la supression
du troisième point de la polyligne ouverte de la figure 6.1).

— On peut parcourir les points d’une polyligne ;

— On peut effectuer des transformations géométriques (translation, rotation, etc.) ;

— On peut calculer des propriétés d’une polyligne (par exemple sa longueur totale).

FIGURE 6.2 – Supression d’un point

6.2.1 Analyse

Proposez le TAD Polyligne (sans les parties Axiome et Sémantique) avec les opérations suivantes :

— créer une polyligne ouverte à partir de deux Point2D ;

— savoir si une polyligne est fermée ;

— ouvrir une polyligne ;

— fermer une polyligne ;

— connaitre le nombre de points d’un polyligne ;

— obtenir le ième point d’une polyligne ;

— insérer le ième point d’une polyligne ;

— supprimer le ième point d’une polyligne (on suppose qu’elle a au moins 3 points) ;

— calculer la longueur d’un polyligne ;
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— translater une polyligne ;

— faire une rotation d’une polyligne.

Correction proposée:

Nom: Polyligne
Utilise: Reel,Booleen,NaturelNonNul,Point2D
Opérations: polyligne: Point2D × Point2D ↛ Polyligne

estFermee: Polyligne→ Booleen
ouvrir: Polyligne→ Polyligne
fermer: Polyligne→ Polyligne
nbPoints: Polyligne→ NaturelNonNul
iemePoint: Polyligne × NaturelNonNul ↛ Point
ajouterPoint: Polyligne × Point × NaturelNonNul ↛ Point
supprimerPoint: Polyligne × NaturelNonNul ↛ Polyligne
longueur: Polyligne→ ReelPositif
translater: Polyligne × Point2D→ Polyligne
realiserRotation: Polyligne × Point2D × Reel→ Polyligne

Préconditions: polyligne(pt1, pt2): pt1 ̸= pt2

iemePoint(pl, i): i ≤ nbPoints(pl)

ajouterPoint(pl, pt, i): i ≤ nbPoints(pl) et ∀j ∈ 1..nbPoints(pl), iemePoint(pl, j) ̸=
pt

supprimerPoint(pl, i): i ≤ nbPoints(pl) et nbPoints(pl) ≥ 3

Remarque(s) :

— Il est à noter que les trois dernières opérations ne sont pas obligatoires, elles pourraient être conçues
en tant qu’utilisateur du TAD Polyligne.

6.2.2 Conception préliminaire

Proposez la signature des fonctions et procédures pour le type Polyligne.

Correction proposée:

— fonction polyligne (pt1,pt2 : Point2D) : Polyligne

⌊précondition(s) pt1 ̸= pt2

— fonction estFermee (pl , Polyligne) : Booleen
— procédure fermer (E/S pl : Polyligne)
— procédure ouvrir (E/S pl : Polyligne)
— fonction nbPoints (pl : Polyligne) : NaturelNonNul
— fonction iemePoint (pl : Polyligne, position : NaturelNonNul) : Point2D

⌊précondition(s) position ≤ nbPoints(pl)

— procédure ajouterPoint (E/S pl : Polyligne,E pt : Point2D, position : NaturelNonNul)
⌊précondition(s) position ≤ nbPoints(pl) + 1 et ∀i ∈ 1..nbPoints(pl), iemePoint(pl, i) ̸= pt
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— procédure supprimerPoint (E/S pl : Polyligne,E position : NaturelNonNul)
⌊précondition(s) position ≤ nbPoints(pl) et nbPoints(pl) ≥ 3

— fonction longueur (pl : Polyligne) : ReelPositif
— procédure translater (E/S pl : Polyligne,E vecteur : Point2D)
— procédure realiserRotation (E/S pl : Polyligne,E centre : Point2D, angleEnRadian : Reel)

6.2.3 Conception détaillée

On propose de représenter le type Polyligne de la façon suivante :
Type Polyligne = Structure

lesPts : Tableau[1..MAX] de Point2D
nbPts : Naturel
estFermee : Booleen

finstructure
Proposez les fonctions et procédures correspondant aux opérations suivantes :

— créer une polyligne ouverte à partir de deux Point2D ;

— ouvrir une polyligne ;

— translater une polyligne.

Correction proposée:
fonction polyligne (pt1,pt2 : Point2D) : Polyligne

Déclaration resultat : Polyligne

debut
resultat.nbPts← 2
resultat.lesPts[1]← pt1
resultat.lesPts[2]← pt2
resultat.estFermee← FAUX
retourner resultat

fin
procédure ouvrir (E/S pl : Polyligne)
debut

pl.estFermee← FAUX
fin
procédure translater (E/S pl : Polyligne,E vecteur : Point2D)

Déclaration i : Naturel
debut

pour i←1 à nbPoints(pl) faire
Point2D.translater(pl.lesPts[i],vecteur)

finpour
fin

Remarque(s) :

— Il est à noter que cette dernière procédure aurait pu être écrite en utilisant le principe d’encapsula-
tion :
procédure translater (E/S pl : Polyligne,E vecteur : Point2D)
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Déclaration i : Naturel
debut

pour i←1 à nbPoints(pl) faire
temp← iemePoint(pl,i)
Point2D.translater(temp,vecteur)
supprimerPoint(pl,i)
ajouterPoint(pl,temp,i)

finpour
fin
Mais cela met en avant le fait qu’il manque une opération remplacer non obligatoire mais qui facilite
la vie des utilisateurs du TAD.

6.3 Utilisation d’une polyligne

Dans cette partie, nous sommes utilisateur du type Polyligne et nous respectons le principe d’encapsu-
lation.

6.3.1 Point à l’intérieur

Nous supposons posséder la fonction suivante qui permet de calculer l’angle orienté en degré formé par les
segments (ptCentre, pt1) et (ptCentre, pt2) :

— fonction angle (ptCentre,pt1,pt2 : Point2D) : Reel
⌊précondition(s) pt1 ̸=ptCentre et pt2̸=ptCentre

Il est possible de savoir si un point pt est à l’intérieur ou à l’extérieur d’une polyligne fermée en calculant
la somme des angles orientés formés par les segments issus de pt vers les points consécutifs de la polyligne. En
effet si cette somme en valeur absolue est égale à 360◦ alors le point pt est à l’intérieur de la polyligne, sinon il
est à l’extérieur.

Par exemple, sur la figure 6.3, on peut savoir algorithmiquement que pt est à l’intérieur de la polyligne car
|α1 + α2 + α3 + α4 + α5| = 360.

pt1

2 3

4

5

α
1

α
2

α
3

α
4

α
5

FIGURE 6.3 – Point à l’intérieur d’une polyligne

Proposez le code de la fonction suivante :estALInterieur
fonction estALinterieur (p : Polyligne, pt : Point2D) : Booleen
⌊précondition(s) estFerme(p) et non estSurLaFrontiere(pt,p)

Correction proposée:
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fonction estALinterieur (p : Polyligne, pt : Point2D) : Booleen

⌊précondition(s) estFerme(p) et non estSurLaFrontiere(pt,p)

Déclaration i : Naturel
sommeAngle : Reel

debut
sommeAngle← 0
pour i←1 à nbPoints(p)-1 faire

sommeAngle← sommeAngle+angle(pt,iemePoint(p,i),iemePoint(p,i+1))
finpour
sommeAngle← sommeAngle+angle(pt,iemePoint(p,nbPoints(p)),iemePoint(p,1))
retourner sommeAngle=360 ou sommeAngle=-360

fin

6.3.2 Surface d’une polyligne par la méthode de monté-carlo

Une des façons d’approximer la surface d’une polyligne est d’utiliser la méthode de Monté-Carlo. Le prin-
cipe de cette méthode est de ≪ calculer une valeur numérique en utilisant des procédés aléatoires, c’est-à-dire
des techniques probabilistes ≫ (Wikipédia). Dans le cas du calcul d’une surface, il suffit de tirer au hasard des
points qui sont à l’intérieur du plus petit rectangle contenant la polyligne. La surface S de la polyligne pourra
alors être approximée par la formule suivante :

S ≈ SurfaceDuRectangle× Nb points dans la polyligne
Nb points total

Par exemple, sur la figure 6.4, en supposant que le rectangle fasse 3 cm de hauteur et 4, 25 cm de largeur, et
qu’il y a 28 points sur 39 qui sont à l’intérieur de la polyligne, sa surface S peut être approximée par :

S ≈ 3× 4, 25× 28

38
= 9, 39 cm2

FIGURE 6.4 – Calcul de la surface d’une polyligne par la méthode de Monté-Carlo

On suppose posséder la procédure suivante qui permet d’obtenir un réel aléatoire entre une borne minimum
et une borne maximum :

— procédure reelAleatoire (E borneMin,bornneMax : Reel, S leReel : Reel)

1. Proposez l’analyse descendante pour le calcul d’une surface d’une polyligne à l’aide de la méthode de
Monté-Carlo.
Correction proposée:
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surfacePolyligne Polyligne × Naturel→ Reel
rectangleEnglobant Polyligne→ Point2D × Point2D
surfaceRectangle Point2D × Point2D→ Reel
pointAleatoireDansRectangle Point2D × Point2D→ Point2D

2. Donnez les signatures des procédures et fonctions de votre analyse descendante.
Correction proposée:

— fonction surfacePolyligne (p : Polyligne, nbPoints : Naturel) : Reel
— fonction rectangleEnglobant (p : Polyligne) : Point2D, Point2D
— fonction surfaceRectangle (ptBasGauche,ptHautDroit : Point2D) : Reel
— procédure pointAleatoireDansRectangle (E ptBasGauche,ptHautDroit : Point2D, S lePoint : Point2D)

3. Donnez l’algorithme de l’opération principale (au sommet de votre analyse descendante).
Correction proposée:

fonction surfacePolyligne (p : Polyligne, nbPoints : NaturelNonNul) : Reel
⌊précondition(s) estFerme(p) et not tousLesPointsAlignes(p)

Déclaration ptBasGauche, ptHautDroit, pt : Point2D
i, nbDans, nbPointsTotal : Naturel

debut
ptBasGauche,ptHautDroit← rectangleEnglobant(p)
surface← surfaceRectangle(ptBasGauche,ptHautDroit)
nbDans← 0
nbPointsTotal← 0
tant que nbPointsTotal̸=nbPoints faire

pointAleatoireDansRectangle(ptBasGauche,ptHautDroit, pt)
si non estSurLaFrontiere(p, pt) alors

nbPointsTotal← nbPointsTotal+1
si estALinterieur(p,pt) alors

nbDans← nbDans+1
finsi

finsi
fintantque
retourner surface*nbDans/nbPointsTotal

fin



Chapitre 7

Tri par tas

Attendus d’apprentissages disciplinaires évalués

— AN004 : Comprendre et appliquer des consignes algorithmiques sur un exemple

— CD102 : Calculer une complexité dans le pire et le meilleur des cas

— CD201 : Identifier et résoudre le problème des cas non récursifs

— CD202 : Identifier et résoudre le problème des cas récursifs

— CD501 : Comprendre les algorithmes des différents tris et leurs complexités

7.1 Qu’est ce qu’un tas?

Un tas est un arbre binaire particulier : la valeur de chaque noeud est supérieure aux valeurs contenues dans
ses sous-arbres et l’arbre est rempli par niveau (de gauche à droite), un nouveau niveau n’étant commencé que
lorsque le précédent est complet.

Un tas peut être représenté l’aide d’un tableau t de telle sorte que les fils gauche et droit de t[i] sont
respectivement t[2 ∗ i] et t[2 ∗ i+ 1].

Dessinez l’arbre binaire représenté par le tableau t suivant :

1 2 3 4 5 6 7 8 9 10
t 87 77 47 33 40 24 25 18 5 29

Correction proposée:
45
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24 2533

47

29

40

77

518

87

7.2 Fonction estUnTas

Donnez l’algorithme récursif de la fonction suivante qui permet de savoir si un tableau t de n éléments
significatifs représente un tas à partir de la racine de position i :

— fonction estUnTas (t : Tableau[1..MAX] d’Entier, i,n : Naturel) : Booleen
⌊précondition(s) i≤n

Correction proposée:
fonction estUnTas (t : Tableau[1..MAX] d’Entier, i,n : Naturel) : Booleen
⌊précondition(s) i≤n

debut
si 2*i > n alors

retourner VRAI
sinon

si 2*i+1 > n alors
retourner t[i]≥t[2*i]

sinon
si t[i]≥max(t[2*i],t[2*i+1]) alors

retourner estUnTas(t,2*i,n) et estUnTas(t,2*i+1,n)
sinon

retourner FAUX
finsi

finsi
finsi
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fin

7.3 Procédure faireDescendre

À l’issue de l’appel à cette procédure faireDescendre, l’arbre (représenté par un tableau) dont la racine est
en position i sera un tas. On présuppose que les deux arbres dont les racines sont positionnées en 2i et 2i + 1
sont des tas.

La signature de cette procédure est :

— procédure faireDescendre (E/S t : Tableau[1..MAX] d’Entier,E i,n : Naturel)

1. En supposant que la première valeur du tableau t de la partie 7.1 ne soit pas 87 mais 30. Donnez les
valeurs de t après l’appel faireDescendre(t,1,10).

2. Proposez l’algorithme de la procédure faireDescendre.

3. Donnez la complexité dans le pire des cas de votre algorithme. Justifiez.

Correction proposée:

1. On obtient alors le tableau :
77 40 47 33 30 24 25 18 5 29

2. L’algorithme est :
fonction indiceDuMax (t : Tableau[1..MAX] d’Entier, n,i,j : Naturel) : Naturel
⌊précondition(s) i≤n et i≤j

debut
si j≤n alors

si t[i]>t[j] alors
retourner i

sinon
retourner j

finsi
sinon

retourner i
finsi

fin
Version itérative
procédure faireDescendre (E/S t : Tableau[1..MAX] d’Entier,E i,n : Naturel)

Déclaration elementBienPositionne :Booleen
posDuMax :Naturel

debut
elementBienPositionne← FAUX
tant que non elementBienPositionne faire

si 2*i≤n alors
// dans ce cas i ne référence pas une feuille
posDuMax← indiceDuMax(t,n,2*i,2*i+1)
si t[i]<t[posDuMax] alors

echanger(t[i],t[posDuMax])
i← posDuMax

sinon
elementBienPositionne← VRAI
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finsi
sinon

elementBienPositionne← VRAI
finsi

fintantque
fin
Version récursive
procédure faireDescendre (E/S t : Tableau[1..MAX] d’Entier,E i,n : Naturel)

Déclaration posDuMax :Naturel
debut

si 2*i≤n alors
posDuMax← indiceDuMax(t,n,2*i,2*i+1)
si t[i]<t[posDuMax] alors

echanger(t[i],t[posDuMax])
faireDescendre(t,posDuMax,n)

finsi
finsi

fin
3. À chaque itération l’indice de i est multiplié par 2 (à un près) jusqu’à ce que i soit plus grand que n, la

complexité est donc en log2(n).

7.4 Procédure tamiser

L’objectif de cette procédure est de transformer un tableau de n éléments significatifs quelconque en un tas.
Pour ce faire on part du milieu du tableau en remontant jusqu’au premier élément du tableau pour qu’à l’issue
de chaque itération l’arbre représenté par le tableau dont la racine est à la position i soit un tas.

1. Soit le tableau t suivant :

1 2 3 4 5 6 7 8 9 10
t 33 77 25 18 40 24 47 87 5 29

Donnez les valeurs de ce tableau à l’issue de chaque itération.

2. Proposez l’algorithme de la procédure tamiser.

3. Donnez la complexité dans le pire des cas de votre algorithme. Justifiez.

Correction proposée:

1. À l’issue de chaque itération on a :
i=5 33 77 25 18 40 24 47 87 5 29
i=4 33 77 25 87 40 24 47 18 5 29
i=3 33 77 47 87 40 24 25 18 5 29
i=2 33 87 47 77 40 24 25 18 5 29
i=1 87 77 47 33 40 24 25 18 5 29

2. On obtient l’algorithme :
procédure tamiser (E/S t : Tableau[1..MAX] d’Entier,E n : Naturel)

Déclaration i : Naturel
debut

pour i←n div 2 à 1 pas de -1 faire



7.5. PROCÉDURE TRIERPARTAS 49

faireDescendre(t,i,n)
finpour

fin
3. L’algorithme est une boucle déterministe dont l’une des bornes est fonction de la taille du problème n, la

complexité est donc n fois la complexité du corps de cette itération. On a donc une complexité dans le
pire des cas qui de n ∗ log2(n).

7.5 Procédure trierParTas

Le principe du tri par tas est simple. Après avoir transformé le tableau t composé de n éléments significatifs
en un tas, cet algorithme est composé d’itérations i (allant de n jusqu’à 2) qui :

— échange t[1] et t[i] ;

— s’assure que le tableau de i− 1 éléments significatifs soit un tas.

Voici les différentes étapes de cet algorithme une fois que le tableau t de la partie 7.4 ait été transformé en
tas (tableau de la partie 7.1) :

1 77 40 47 33 29 24 25 18 5 87
2 47 40 25 33 29 24 5 18 77 87
3 40 33 25 18 29 24 5 47 77 87
4 33 29 25 18 5 24 40 47 77 87
5 29 24 25 18 5 33 40 47 77 87
6 25 24 5 18 29 33 40 47 77 87
7 24 18 5 25 29 33 40 47 77 87
8 18 5 24 25 29 33 40 47 77 87
9 5 18 24 25 29 33 40 47 77 87

1. Dessinez l’analyse descendante a posteriori de ce problème.

2. Proposez l’algorithme de la procédure trierParTas.

3. Donnez la complexité dans le pire des cas de votre algorithme. Justifiez.

Correction proposée:

1. Analyse descendante :
trierParTas Tableau[1..MAX] d’Entier × Naturel→ Tableau[1..MAX] d’Entier

tamiser Tableau[1..MAX] d’Entier × Naturel→ Tableau[1..MAX] d’Entier
faireDescendre Tableau[1..MAX] d’Entier×Naturel×Naturel→Tableau[1..MAX] d’Entier

2. L’algorithme
procédure trierParTas (E/S t : Tableau[1..MAX] d’Entier,E n : Naturel)
debut

tamiser(t,n)
pour i←n à 2 pas de -1 faire

echanger(t[1],t[i])
faireDescendre(t,1,i-1)

finpour
fin

3. Complexité : l’algorithme est composé d’un schéma séquentiel à deux instructions : tamiser est en n ∗
log2(n) et la deuxième instruction (le pour) est aussi en n ∗ log2(n). La complexité dans le pire des cas
est en n ∗ log2(n).
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Chapitre 8

Sudoku

Attendus d’apprentissages disciplinaires évalués

— AN201 : Identifier les dépendances d’un TAD

— AN203 : Savoir si une opération identifiée fait partie du TAD à spécifier

— AN205 : Formaliser les préconditions d’une opération d’un TAD

— AN205 : Formaliser les préconditions d’une opération d’un TAD

— AN301 : Lister les collections usuelles

— CP003 : Choisir entre une fonction et une procédure

— CD003 : Utiliser le principe d’encapsulation

— CD201 : Identifier et résoudre le problème des cas non récursifs

— CD202 : Identifier et résoudre le problème des cas récursifs

Le jeu du Sudoku est composé d’une grille carrée de 9 cases de côté. Ce jeu consiste ≪ à compléter toute la
grille avec des chiffres allant de 1 à 9. Chaque chiffre ne doit être utilisé qu’une seule fois par ligne, par colonne
et par carré de neuf cases ≫ 1.

On suppose que l’on numérote les lignes, les colonnes et les carrés d’une grille de Sudoku de 1 à 9.
La grille présentée par la figure 8.1 présente une grille de Sudoku à compléter.
Soit les TAD Coordonnee et GrilleSudoku suivants :

Nom: Coordonnee
Utilise: Naturel
Opérations: coordonnee: 1..9 × 1..9→ Coordonnee

obtenirLigne: Coordonnee→ 1..9

obtenirColonne: Coordonnee→ 1..9

obtenirCarre: Coordonnee→ 1..9

Axiomes: - obtenirColonne(coordonnee(c,l))=c
- obtenirLigne(coordonnee(c,l))=l
- obtenirCarre(c)=3*((obtenirLigne(c)-1) div 3)+((obtenirColonne(c)-1) div3)+1

Nom: GrilleSudoku
Utilise: Naturel, Coordonnee, Booleen
Opérations: grilleSudoku: → GrilleSudoku

caseVide: GrilleSudoku × Coordonnee→ Booleen

1. Définition donnée par le journal le Monde.
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FIGURE 8.1 – Exemple de grille de Sudoku

obtenirChiffre: GrilleSudoku × Coordonnee ↛ 1..9

fixerChiffre: GrilleSudoku × Coordonnee × 1..9 ↛ GrilleSudoku
viderCase: GrilleSudoku × Coordonnee ↛ GrilleSudoku

Sémantiques: grilleSudoku: permet de créer une grille de Sudoku vide
caseVide: permet de savoir si une case d’une grille de Sudoku vide
obtenirChiffre: permet d’obtenir le chiffre d’une case non vide
fixerChiffre: permet de fixer un chiffre d’une case vide
viderCase: permet d’enlever le chiffre d’une case non vide

Préconditions: obtenirChiffre(g,c): non caseVide(g,c)
fixerChiffre(g,c,v): caseVide(g,c)
viderCase(g,c): non caseVide(g,c)

8.1 Conception préliminaire

Donnez la signature des fonctions et procédures correspondant aux deux TAD précédents.

Correction proposée:

— fonction coordonnee (c,l : 1..9) : Coordonnee

— fonction obtenirLigne (c : Coordonnee) : 1..9
— fonction obtenirColonne (c : Coordonnee) : 1..9
— fonction obtenirCarre (c : Coordonnee) : 1..9
— fonction grilleSudoku () : GrilleSudoku

— fonction caseVide (g : GrilleSudoku, c : Coordonnee) : Booleen
— fonction obtenirChiffre (g : GrilleSudoku, c : Coordonnee) : 1..9

⌊précondition(s) non caseVide(g,c)
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— procédure fixerChiffre (E/S g : GrilleSudoku,E c : Coordonnee, v : 1..9)
⌊précondition(s) caseVide(g,c)

— procédure viderCase (E/S g : GrilleSudoku,E c : Coordonnee)
⌊précondition(s) non caseVide(g,c)

8.2 Conception détaillée

On se propose de concevoir le TAD Coordonnee de la façon suivante :
Type Coordonnee = Structure

ligne : 1..9
colonne : 1..9

finstructure
Donnez les algorithmes des fonctions correspondant aux opérations de ce TAD.

Correction proposée:
fonction coordonnee (c,l : 1..9) : Coordonnee

Déclaration resultat : Coordonnee

debut
resultat.colonne← c
resultat.ligne← l
retourner resultat

fin
fonction obtenirLigne (c : Coordonnee) : 1..9
debut

retourner c.ligne
fin
fonction obtenirColonne (c : Coordonnee) : 1..9
debut

retourner c.colonne
fin
fonction obtenirCarre (c : Coordonnee) : 1..9
debut

retourner 3*((c.ligne-1) div 3)+(c.colonne -1) div 3+1
fin

8.3 Fonctions métiers

On se propose d’écrire des fonctions et procédures permettant de vérifier ou d’aider à la résolution manuelle
d’une grille de Sudoku.

1. Donnez l’algorithme de la fonction suivante qui permet de savoir si une grille de Sudoku est totalement
remplie (sans vérifier sa validité) :

— fonction estRemplie (g : GrilleSudoku) : Booleen
2. On suppose que l’on possède les fonctions suivantes qui permettent d’obtenir l’ensemble des chiffres déjà

fixés d’une colonne, d’une ligne ou d’un carré :

— fonction obtenirChiffresDUneLigne (g : GrilleSudoku, ligne : 1..9) : Ensemble< 1..9 >

— fonction obtenirChiffresDUneColonne (g : GrilleSudoku, colonne : 1..9) : Ensemble< 1..9 >
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— fonction obtenirChiffresDUnCarre (g : GrilleSudoku, carre : 1..9) : Ensemble< 1..9 >

Donnez l’algorithme de la fonction suivante qui permet de savoir si on peut mettre un chiffre dans une
case vide sans contredire la règle donnée en introduction :

— fonction estChiffreValable (g : GrilleSudoku, chiffre : 1..9, case : Coordonnee) : Booleen
⌊précondition(s) caseVide(g,case)

3. Donnez l’algorithme la fonction suivante qui donne la liste des solutions possibles pour une case vide :

— fonction obtenirSolutionsPossibles (g : GrilleSudoku, case : Coordonnee) : Liste< 1..9 >

⌊précondition(s) caseVide(g,case)

4. Donnez l’algorithme de la fonction suivante qui cherche la solution d’une grille de sudoku g (le booléen
indique s’il y a effectivement une solution) :

— fonction chercherSolution (g : GrilleSudoku) : GrilleSudoku, Booleen

Correction proposée:

1.
fonction estRemplie (g : GrilleSudoku) : Booleen

Déclaration i,j : 1..9
c : Coordonnee
resultat : Booleen

debut
resultat← VRAI
finDeBoucle← FAUX
i← 1
j← 1
tant que resultat et non finDeBoucle faire

c← coordonnee(i,j)
si estVide(g,c) alors

resultat← FAUX
sinon

si i=9 alors
si j=9 alors

finDeBoucle← VRAI
sinon

i← 1
j← j+1

finsi
sinon

i← i+1
finsi

finsi
fintantque
retourner resultat

fin
2.

fonction estChiffreValable (g : GrilleSudoku, chiffre : 1..9, case : Coordonnee) : Booleen
⌊précondition(s) caseVide(g,case)
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Déclaration e1,e2,e3 : Ensemble< 1..9 >

debut
e1← obtenirChiffresDUneLigne(g,obtenirLigne(c))
e2← obtenirChiffresDUneColonne(g,obtenirColonne(c))
e3← obtenirChiffresDUnCarre(g,obtenirCarre(c))
retourner non estPresent(e1,chiffre) et non estPresent(e2,chiffre) et non estPresent(e3,chiffre)

fin
3.

fonction obtenirSolutionsPossibles (g : GrilleSudoku, case : Coordonnee) : Liste< 1..9 >

⌊précondition(s) caseVide(g,case)

Déclaration resultat : Liste< 1..9 >
i : 1..9

debut
resultat← liste()
pour i←1 à 9 faire

si estChiffreValable(g,i,case) alors
inserer(resultat,1,i)

finsi
finpour
retourner resultat

fin
4.

fonction premiereCaseVide (g) : Coordonnee
⌊précondition(s) non estRemplie(g)

Déclaration i,j : 1..9
c : Coordonnee

debut
trouve← FAUX
i← 1
tant que non trouve et i≤9 faire

j← 1
tant que non trouve et i≤9 faire

c← coordonnee(i,j)
si caseVide(g,c) alors

trouve← VRAI
finsi
j← j+1

fintantque
i← i+1

fintantque
retourner c

fin
fonction chercherSolution (g : GrilleSudoku) : GrilleSudoku, Booleen

Déclaration temp, sol : GrilleSudoku
k : 1..9
l : Liste<1..9>
trouve : Booleen
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debut
si estRemplie(g) alors

retourner g, VRAI
sinon

trouve← FAUX
c← premiereCaseVide(g)
l← obtenirSolutionsPossibles(g,c)
k← 1
tant que non trouve et k≤longueur(l) faire

temp← g
fixerChiffre(temp,c,obtenirElement(l,k))
sol, trouve← chercherSolution(temp)
k← k+1

fintantque
retourner sol, trouve

finsi
fin
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Liste

Attendus d’apprentissages disciplinaires évalués

— AN301 : Lister les collections usuelles

— CP003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

— CP005 : Choisir un passage de paramètre (E, S, E/S)

— CD003 : Utiliser le principe d’encapsulation

— CD201 : Identifier et résoudre le problème des cas non récursifs

— CD202 : Identifier et résoudre le problème des cas récursifs

— CD401 : Concevoir et utiliser des listes chaı̂nées

— CD901 : Concevoir un type de données adapté à la situation en terme d’espace mémoire et d’effi-
cacité

9.1 SDD ListeChainee

9.1.1 Type et signatures de fonction et procédure

Après avoir rappelé le SDD ListeChainee dans le paradigme de la programmation structurée, donnez les
signatures des fonctions et procédures permettant de l’utiliser.

Correction proposée:
Voir le cours

9.1.2 Utilisation

1. Écrire une fonction booléenne itérative, estPresent, qui permet de savoir si un élément est présent
dans une liste chaı̂née.

2. Écrire une fonction booléenne récursive, estPresent, qui permet de savoir si un élément est présent
dans une liste chaı̂née.

3. Écrire une procédure récursive, concatener, qui concatène deux listes chaı̂nées.

4. Écrire une procédure récursive, inverser, qui permet d’inverser une liste chaı̂née.

5. Écrire une procédure itérative, inverser, qui permet d’inverser une liste chaı̂née.
57
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Correction proposée:

1. fonction estPresent itérative
fonction estPresent (l : ListeChainee, cherche : Element) : Booleen

Déclaration resultat : Booleen
liste : ListeChainee

debut
resultat← FAUX
liste← l
tant que non estVide(liste) et non resultat faire

si obtenirElement(liste) = cherche alors
resultat← VRAI

sinon
liste← obtenirListeSuivante(liste)

finsi
fintantque
retourner resultat

fin

2. est présent récursif
fonction estPresent (liste : ListeChainee, cherche : Element) : Booleen
debut

si estVide(liste) alors
retourner FAUX

sinon
si obtenirElement(liste) = cherche alors

retourner VRAI
sinon

retourner estPresent(obtenirListeSuivante(liste),cherche)
finsi

finsi
fin

3. concaténation
procédure concatener (E/S l1 : ListeChainee,E l2 : ListeChainee)

Déclaration temp : ListeChainee

debut
si estVide(l1) alors

l1← l2
sinon

si non estVide(l2) alors
temp← obtenirListeSuivante(l1)
concatener(temp,l2)
si estVide(obtenirListeSuivante(l1)) alors

fixerListeSuivante(l1, temp)
finsi

finsi
finsi

fin
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4. inverser (récursif)
procédure inverser (E/S l : ListeChainee)

Déclaration temp : ListeChainee

debut
si non estVide(l) alors

temp← obtenirListeSuivante(l)
inverser(temp)
fixerListeSuivante(l,listeChainee())
concatener(temp,l)
l← temp

finsi
fin

5. inverser (itératif)
procédure inverser (E/S l : ListeChainee)

Déclaration resultat,temp : ListeChainee

debut
resultat← listeVide()
tant que non estVide(l) faire

temp← l
l← obtenirListeSuivante(l)
fixerListeSuivante(temp,resultat)
resultat← temp

fintantque
l← resultat

fin

9.2 Conception détaillée d’une liste ordonnée d’entiers à l’aide d’une liste
chainée

Cet exercice propose de concevoir le type ListeOrdonneeDEntiers (ou LODE) avec le SDD ListeChainee
de l’exercice précédent.

1. Proposez une conception détaillée du type ListeOrdonneeDEntiers

2. Ecrire les fonctions/procédures creationListeOrdonneeDEntiers, inserer, supprimer un élément (le pre-
mier, et que l’on sait présent), obtenirIemeElement à la ième position et longueur proposées par ce type

Correction proposée:

1.
Type ListeOrdonneeDEntiers = Structure

entiers : ListeChainee<Entier>
nbEntiers : Naturel

finstructure
2.

fonction longueur (l :ListeOrdonneeDEntiers) : Naturel
debut

retourner l.nbEntiers
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fin

fonction obtenirEntiers (l :ListeOrdonneeDEntiers) : ListeChainee<Entier>
debut

retourner l.entiers
fin

procédure fixerNbEntiers (E/S l : ListeOrdonneeDEntiers, E valeur : Naturel)
debut

l.nbEntiers← valeur
fin

procédure fixerEntiers (E/S l : ListeOrdonneeDEntiers, E liste : ListeChainee<Entier>)
debut

l.entiers← liste
fin

fonction listeOrdonneeDEntiers () : ListeOrdonneeDEntiers

Déclaration resultat : ListeOrdonneeDEntiers

debut
fixerEntiers(resultat, listeChainee())
fixerNbEntiers(resultat, 0)
retourner resultat

fin

// Version itérative

procédure insererDansListeChainee (E/S l : ListeChainee <Entier>, E element : Entier)

Déclaration parcours, nouveau, temporaire : ListeChainee<Entier>

debut
si estVide(l) alors

ajouter(l,element)
sinon

si obtenirElement(l) > element alors
ajouter(l,element)

sinon
g← l
d← obtenirListeSuivante(g)
tant que non estVide(d) et obtenirElement(d) < element faire

g← d
d← obtenirListeSuivante(g)

fintantque
ajouter(d,element)
fixerListeSuivante(g,d)

finsi
finsi

fin
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// Version récursive

procédure insererDansListeChainee (E/S l : ListeChainee <Entier>, E element : Entier)

Déclaration temp : ListeChainee<Entier>

debut
si estVide(l) alors

ajouter(l, element)
sinon

si obtenirElement(l) > element alors
ajouter(l,element)

sinon
temp← obtenirListeSuivante(l)
insererDansListeChainee(temp, element)
fixerListeSuivante(l, temp)

finsi
finsi

fin

procédure inserer (E/S l : ListeOrdonneeDEntiers, E element : Entier)

Déclaration temp : ListeChainee<Entier>

debut
temp← obtenirEntiers(l)
insererDansListeChainee(temp, element)
fixerEntiers(l, temp)
fixerNbEntiers (l, longueur(l) + 1)

fin

procédure supprimerDansListeChainee (E/S l : ListeChainee, E e : Entier)

⌊précondition(s) estPresent(l, e)

Déclaration temp : ListeChainee <Entier>

debut
si obtenirElement(l) = e alors

supprimerTete(l)
sinon

temp← obtenirListeSuivante(l,e)
supprimerDansListeChainee(temp,e)
fixerListeSuivante(l, temp)

finsi
fin

procédure supprimer (E/S l : ListeOrdonneeDEntiers, E element : Entier)

⌊précondition(s) estPresent(l, e)

Déclaration temp : ListeChainee <Entier>

debut
temp← obtenirEntiers(l)
supprimerDansListeChainee(temp,element)
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fixerEntiers(l, temp)
fixerNbEntiers(l, longueur(l) - 1)

fin

fonction obtenirIemeElement (liste : ListeOrdonneeDEntiers, i : NaturelNonNul) : Entier
⌊précondition(s) i ≤ longueur(liste)

Déclaration l1 : ListeOrdonneeDEntiers
j : Naturel

debut
l1← obtenirEntiers(liste)
pour j←2 à i faire

l1← obtenirListeSuivante(l1)
finpour
retourner obtenirElement(l1)

fin

fonction longueur (liste : ListeOrdonneeDEntiers) : Naturel
debut

retourner longueur(liste)
fin

3.

9.3 Utilisation : Liste ordonnée d’entiers

Écrire une fonction, fusionner, qui permet de fusionner deux listes ordonnées

Correction proposée:
procédure insererUneListeOrdonneeDEntiers (E/S dans : ListeOrdonneeDEntiers, E liste : ListeOrdonnee-
DEntiers)

Déclaration i : Naturel
debut

pour i←1 à longueur(liste) faire
inserer(dans, obtenirIemeElement(liste, i))

finpour
fin

fonction fusionner (l1,l2 : ListeOrdonneeDEntiers) : ListeOrdonneeDEntiers

Déclaration resultat : ListeOrdonneeDEntiers

debut
resultat← listeOrdonneeDEntiers()
insererUneListeOrdonnéeDEntiers(resultat, l1)
insererUneListeOrdonnéeDEntiers(resultat, l2)
retourner resultat

fin



Chapitre 10

Arbre Binaire de Recherche (ABR)

Attendus d’apprentissages disciplinaires évalués

— CD201 : Identifier et résoudre le problème des cas non récursifs

— CD202 : Identifier et résoudre le problème des cas récursifs

— CD403 : Concevoir et utiliser des arbres (binaires, n-aires)

— CD601 : Concevoir des collections à l’aide de SDD

— CD602 : Comprendre les algorithmes d’insertion et de suppression (naı̈fs et AVL) dans un arbre
binaire de recherche

— CD901 : Concevoir un type de données adapté à la situation en terme d’espace mémoire et d’effi-
cacité

10.1 Conception préliminaire et utilisation d’un ABR

Pour rappel, le TAD ABR modélisant un Arbre Binaire de Recherche est défini de la façon suivante :
Nom: ABR (ArbreBinaireDeRecherche)
Paramètre: Element
Utilise: Booleen
Opérations: aBR: → ABR

estVide: ABR→ Booleen
insérer: ABR × Element→ ABR
supprimer: ABR × Element→ ABR
estPresent: ABR × Element→ Booleen
obtenirElement: ABR ↛ Element
obtenirFilsGauche: ABR ↛ ABR
obtenirFilsDroit: ABR ↛ ABR

Axiomes: - estVide(aBR())
- non estVide(insérer(e,a))
- obtenirElement(insérer(e,aBR()))=e
- obtenirFilsGauche(insérer(e,a))=insérer(e,obtenirFilsGauche(a)

et obtenirElement(a)> e
- obtenirFilsDroit(insérer(e,a))=insérer(e,obtenirFilsDroit(a)

et obtenirElement(a)< e
. . .
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Préconditions: obtenirElement(a): non(estV ide(a))

obtenirFilsGauche(a): non(estV ide(a))

obtenirFilsDroit(a): non(estV ide(a))

1. Donner les signatures des fonctions et procédures d’un ABR.

2. Écrire une procédure récursive, afficherEnOrdreCroissant, qui affiche, en ordre croissant, tous
les éléments d’un ABR.

3. Écrire une procédure récursive, afficherEnOrdreDecroissant, qui affiche, en ordre décroissant,
tous les éléments d’un ABR.

4. Écrire une fonction récursive, hauteur, qui calcule la hauteur d’un ABR (-1 si l’arbre est vide, 0 s’il
n’y a qu’un seul élément).

5. Écrire une fonction récursive, nbElements, qui calcule le nombre d’éléments d’un arbre.

Correction proposée:

1. Voir le cours

2.
procédure afficherEnOrdreCroissant (E a : ABR)
debut

si non estVide(a) alors
afficherEnOrdreCroissant(obtenirFilsGauche(a))
ecrire(obtenirElement(a))
afficherEnOrdreCroissant(obtenirFilsDroit(a))

finsi
fin

3.
procédure afficherEnOrdreDecroissant (E a : ABR)
debut

si non estVide(a) alors
afficherEnOrdreDecroissant(obtenirFilsDroit(a))
ecrire(obtenirElement(a))
afficherEnOrdreDecroissant(obtenirFilsGauche(a))

finsi
fin

4.
fonction maximum (a, b : Element) : Element
debut

si a > b alors
retourner a

sinon
retourner b

finsi
fin

fonction hauteur (a : ABR) : Entier
debut

si estVide(a) alors
retourner -1
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sinon
retourner 1+maximum(hauteur(obtenirFilsGauche(a)),hauteur(obtenirFilsDroit(a)))

finsi
fin

5.
fonction nbElements (a : ABR) : Naturel
debut

si estVide(a) alors
retourner 0

sinon
retourner 1+nbElements(obtenirFilsGauche(a))+nbElements(obtenirFilsDroit(a))

finsi
fin

10.2 Une conception détaillée : ABR

Nous allons concevoir le type ABR à l’aide du SDD ArbreBinaire

1. Rappeler le SDD ArbreBinaire (type et signatures des fonctions et procédures)

2. Proposer une implantation du type ABR

3. Expliciter la fonction booléenne : estPresent.

4. Expliciter la procédure d’insertion : inserer.

5. Expliciter la procédure de suppression : supprimer.

Correction proposée:

1.
Type ArbreBinaire = ˆ Noeud
Type Noeud = Structure

lElement : Element
filsGauche : ArbreBinaire
filsDroit : ArbreBinaire

finstructure

fonction arbreBinaire () : ArbreBinaire
fonction estVide (a : ArbreBinaire) : Booleen
fonction ajouterRacine (fg,fd : ArbreBinaire,e : Element) : ArbreBinaire
fonction obtenirElement (a : ArbreBinaire) : Element

⌊précondition(s) non estVide(a)

fonction obtenirFilsGauche (a : ArbreBinaire) : ArbreBinaire

⌊précondition(s) non estVide(a)

fonction obtenirFilsDroit (a : ArbreBinaire) : ArbreBinaire

⌊précondition(s) non estVide(a)

procédure fixerFilsGauche (E a : ArbreBinaire, ag : ArbreBinaire)

⌊précondition(s) non estVide(a)

procédure fixerFilsDroit (E a : ArbreBinaire, ad : ArbreBinaire)
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⌊précondition(s) non estVide(a)

procédure supprimerRacine (E/S a : ArbreBinaire, S fg,fd : ArbreBinaire)
⌊précondition(s) non estVide(a)

procédure supprimer (E/S a : ArbreBinaire)

2. Type ABR = ArbreBinaire

3.
fonction estPresent (a : ABR, e : Element) : Booleen

Déclaration temp : ABR

debut
si estVide(a) alors

retourner FAUX
sinon

si e=obtenirElement(a) alors
retourner VRAI

sinon
si e<obtenirElement(a) alors

retourner estPresent(obtenirFilsGauche(a),e)
sinon

retourner estPresent(obtenirFilsDroit(a),e)
finsi ‘

finsi
finsi

fin
4.

procédure inserer (E/S a : ABR, E e : Element)
Déclaration temp : ABR

debut
si estVide(a) alors

a← ajouterRacine(arbreBinaireRecherche(), arbreBinaireRecherche(), e)
sinon

si e≤obtenirElementRacine(a) alors
temp← obtenirFilsGauche(a)
inserer(temp, e)
fixerFilsGauche(a, temp)

sinon
temp← obtenirFilsDroit(a)
inserer(temp, e)
fixerFilsDroit(a, temp)

finsi
finsi

fin
5.

procédure supprimer (E/S a : ABR; E e : Element)
Déclaration nouveauSommet : Element

temp,tempG,tempD : ABR

debut
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si non estVide(a) alors
si e < obtenirElement(a) alors

temp← obtenirFilsGauche(a)
supprimer(temp,e)
fixerFilsGauche(a,temp)

sinon
si e > obtenirElement(a) alors

temp← obtenirFilsDroit(a)
supprimer(temp,e)
fixerFilsDroit(a,temp)

sinon
si estVide(obtenirFilsGauche(a)) et estVide(obtenirFilsDroit(a)) alors

ArbreBinaire.supprimerRacine(a,tempG,tempD)
sinon

si estVide(obtenirFilsGauche(a)) ou estVide(obtenirFilsDroit(a)) alors
ArbreBinaire.supprimerRacine(a,tempG,tempD)
si estVide(tempG) alors

a← tempD
sinon

a← tempG
finsi

sinon
ArbreBinaire.supprimerRacine(a,tempG,tempD)
nouveauSommet← obtenirElement(lePlusGrand(tempG))
supprimer(tempG,nouveauSommet)
a← ArbreBinaire.ajouterRacine(nouveauSommet,tempG,tempD)

finsi
finsi

finsi
finsi

finsi
fin



68 CHAPITRE 10. ARBRE BINAIRE DE RECHERCHE (ABR)



Chapitre 11

Arbres AVL

Pour rappel un AVL est un ABR qui conserve l’équilibre entre tous ces fils (à +-1 près) après les opérations
d’insertion et de supression.

1. Expliciter les procédures de “simple rotation”, faireSimpleRotationADroite et faireSimple-
RotationAGauche, et de “double rotations”, faireDoubleRotationADroite et faireDouble-
RotationAGauche.
Correction proposée:

procédure faireSimpleRotationADroite (E/S a : ABR)

⌊précondition(s) non(estVide(a)) et non(estVide(obtenirFilsGauche(a)))

Déclaration temp : ABR

debut
temp← obtenirFilsGauche(a)
fixerFilsGauche(a,obtenirFilsDroit(temp))
fixerFilsDroit(temp,a)
a← temp

fin
procédure faireDoubleRotationADroite (E/S a : ABR)

⌊précondition(s) non(estVide(a)) et non(estVide(obtenirFilsGauche(a)))
et non(estVide(obtenirFilsDroit(obtenirFilsGauche(a)))

Déclaration temp : ABR

debut
temp← obtenirFilsGauche(a)
faireSimpleRotationAGauche(temp)
fixerFilsGauche(a,temp)
faireSimpleRotationADroite(a)

fin

2. Montrer que les simples et doubles rotations conservent la propriété d’un ABR (en considérant que l’arbre
ne contient pas de doublons).
Correction proposée:

— Simple rotation à droite (même raisonnement à gauche)
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Bd

Ad

B

A

Ag

Ag

Bd

A

B

Ad

Puisque l’arbre de la figure de gauche est un ABR on sait que :
— tous les éléments de Ag sont plus petit que A et B et les éléments de Ad et Bd ;
— tous les éléments de Ad sont plus grands que A et plus petit que B et les éléments Bd ;
— tous les éléments de Bd sont plus grands que B et A ;

Dès lors l’arbre de droite est aussi un ABR.
— Double rotation (à droite ou à gauche) : puisque ces opérations sont une combinaison de simples

rotations, l’arbre résultat est donc aussi un ABR.

3. Expliciter la procédure d’équilibrage d’un arbre qui aurait deux sous-arbres équilibrés mais qui pourrait
ne pas être équilibré.
Correction proposée:

procédure equilibrer (E/S a : ABR)
debut

si hauteur(obtenirFilsGauche(a))>hauteur(obtenirFilsDroit(a))+1 alors
si hauteur(obtenirFilsGauche(obtenirFilsGauche(a)))≥ hauteur(obtenirFilsDroit(obtenirFilsGauche(a)))
alors

faireSimpleRotationDroite(a)
sinon

faireDoubleRotationDroite(a)
finsi

sinon
si hauteur(obtenirFilsDroit(a))>hauteur(obtenirFilsGauche(a))+1 alors

si hauteur(obtenirFilsGauche(obtenirFilsDroit(a)))≤ hauteur(obtenirFilsDroit(obtenirFilsDroit(a)))
alors

faireSimpleRotationGauche(a)
sinon

faireDoubleRotationGauche(a)
finsi

finsi
finsi

fin

4. Expliciter la procédure d’insertion : inserer.
Correction proposée:
Il suffit de reprendre la procédure d’insertion vu à la section 10.2 et d’appeler equilibrer après
chaque insertion dans le fils gauche ou droit.
Il est à noter que des conceptions d’AVL ajoutent au sein de chaque nœud la hauteur de l’arbre courant
afin de ne pas recalculer cette hauteur qui coûte O(n).

5. Expliciter la procédure de suppression : supprimer.
Correction proposée:
Il y a deux façons de résoudre ce problème :
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(a) Reprendre l’algorithme de suppression d’un élément dans un ABR vu à la section 10.2 puis rééquilibrer
après chaque suppression

(b) Redescendre la valeur à supprimer vers une feuille par une utilisation des simples ou doubles
rotations
procédure supprimer (E/S a : ABR, E e : Element)

Déclaration nouveauSommet : Element
temp,tempG,tempD : ABR

debut
si non estVide(a) alors

si e < obtenirElement(a) alors
temp← obtenirFilsGauche(a)
supprimer(temp,e)
fixerFilsGauche(a,temp)
equilibrer(a)

sinon
si e > obtenirElement(a) alors

temp← obtenirFilsDroit(a)
supprimer(temp,e)
fixerFilsDroit(a,temp)
equilibrer(a)

sinon
si estVide(obtenirFilsGauche(a)) et estVide(obtenirFilsDroit(a)) alors

ArbreBinaire.supprimerRacine(a,tempG,tempD)
sinon

si hauteur(obtenirFilsGauche(a)) > hauteur(obtenirFilsDroit(a)) alors
si hauteur(obtenirFilsGauche(obtenirFilsGauche(a))) > hauteur(obtenirFilsDroit(
obtenirFilsGauche(a))) alors

faireSimpleRotationADroite(a)
sinon

faireDoubleRotationADroite(a)
finsi
temp← obtenirFilsDroit(a)
supprimer(temp,e)
fixerFilsDroit(a,temp)

sinon
équivalent mais avec des simple et double rotation à gauche

finsi
finsi

finsi
finsi

finsi
fin
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Chapitre 12

Graphes

Attendus d’apprentissages disciplinaires évalués

— AN004 : Comprendre et appliquer des consignes algorithmiques sur un exemple

— AN201 : Identifier les dépendances d’un TAD

— AN203 : Savoir si une opération identifiée fait partie du TAD à spécifier

— AN204 : Formaliser des opérations d’un TAD

— AN205 : Formaliser les préconditions d’une opération d’un TAD

— AN206 : Formaliser des axiomes ou savoir définir la sémantique d’une opération d’un TAD

— CP003 : Choisir entre une fonction et une procédure

— CP004 : Concevoir une signature (préconditions incluses)

— CP005 : Choisir un passage de paramètre (E, S, E/S)

— CD201 : Identifier et résoudre le problème des cas non récursifs

— CD202 : Identifier et résoudre le problème des cas récursifs

— CD801 : Concevoir des graphes (matrice d’adjacence, matrice d’incidence, liste d’adjacence)

— CD804 : Comprendre des algorithmes de recherche du plus court chemin : Dijkstra et A*

12.1 Le labyrinthe

L’objectif de cet exercice est d’étudier le problème du labyrinthe, c’est-à-dire créer un algorithme permettant
de trouver le chemin qui mène de l’entrée à la sortie (cf. figure 12.1).

12.1.1 Partie publique

Un labyrinthe est composé de cases. On accède à une case à partir d’une case et d’une direction. Les
directions possibles sont Nord, Sud, Est et Ouest.

Par exemple, comme le montre la figure 12.2 le labyrinthe précédent peut être considéré comme étant
composé de 25 cases. La case numéro 6 est la case d’entrée. La case 20 est la case de sortie. La case 8 est
accessible depuis la case 13 avec la direction Nord.

Le TAD labyrinthe

Les opérations disponibles sur un labyrinthe sont les suivantes :
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FIGURE 12.1 – Un labyrinthe

1

6

11
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2
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9
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5

10

15

20

25

FIGURE 12.2 – Un labyrinthe composé de cases

— créer un labyrinthe,

— obtenir la case d’entrée,

— savoir si une case est la case de sortie,

— obtenir une liste de directions possibles depuis une case donnée,

— obtenir la case accessible depuis une case avec une direction.

1. Donnez le type Direction
Correction proposée:

Type Direction = {Nord,Sud,Est,Ouest}

2. Donnez le TAD Labyrinthe
Correction proposée:

Nom: Labyrinthe
Utilise: Ensemble, Direction, NaturelNonNul
Opérations: labyrinthe: NaturelNonNul × NaturelNonNul→ Labyrinthe

caseDEntree: Labyrinthe→ NaturelNonNul
estCaseDeSortie: Labyrinthe × NaturelNonNul→ Booleen
directionsPossibles: Labyrinthe × NaturelNonNul→ Liste<Direction>
caseDestination: Labyrinthe × NaturelNonNul × Direction ↛ NaturelNon-

Nul
Préconditions: caseDestination(l,c,d): estPresent(directionsPossibles(l,c),d)
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Algorithme du petit-poucet

Une solution pour trouver la sortie est d’utiliser le principe du petit poucet, c’est-à-dire mettre un caillou
sur les cases rencontrées.

Pour ne pas modifier le TAD Labyrinthe, plutôt que de marquer une case avec un caillou on peut ajouter une
case à un ensemble. Pour vérifier si on a déja rencontré une case, il suffit alors de vérifier si la case est présente
dans l’ensemble.

Proposer le corps de la procédure suivante qui permet de trouver le chemin de sortie (s’il existe) à partir
d’une case donnée :

procédure calculerCheminDeSortie (E l : Labyrinthe, caseCourante : NaturelNonNul, E/S casesVisitees :
Ensemble<NaturelNonNul>, S permetDAllerJusquALaSortie : Booleen, lesDirectionsASuivre : Liste<Direction>)

Correction proposée:

procédure calculerCheminDeSortie (E l : Labyrinthe, caseCourante : NaturelNonNul, E/S casesVisitees :
Ensemble<NaturelNonNul>, S permetDAllerJusquALaSortie : Booleen, lesDirectionsASuivre : Liste<Direction>)

Déclaration directions : Liste<Direction>
i : Naturel
solutionTrouvee : Booleen
caseTest : NaturelNonNul

debut
si estCaseDeSortie(caseCourante) alors

permetDAllerJusquALaSortie← VRAI
lesDirectionsASuivre← liste()

sinon
si non estPresent(casesVisitees,caseCourante) alors

casesVisitees← ajouter(casesVisitees,caseCourante)
directions← directionsPossibles(l,caseCourante)
permetDAllerJusquALaSortie← FAUX
i← 1
tant que i≤longueur(directions) et non permetDAllerJusquALaSortie faire

caseTest← caseDestination(l,obtenirElement(directions,i))
calculerCheminDeSortie(l,caseTest,casesVisitees,permetDAllerJusquALaSortie,
lesDirectionsASuivre)
si permetDAllerJusquALaSortie alors

ajouter(lesDirectionsASuivre,obtenirElement(directions,i))
finsi
i← i+1

fintantque
sinon

permetDAllerJusquALaSortie← FAUX
finsi

finsi
fin
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12.1.2 Partie privée

Le graphe

On peut représenter un labyrinthe à l’aide d’un graphe étiqueté et valué. On considère dans ce cas que les
valeurs des nœuds du graphe sont les cases du labyrinthe et les arcs étiquetés par les directions.

Dessinez le graphe associé à l’exemple de la figure 12.3.

1 2
 3

4 5 6

7 8 9

FIGURE 12.3 – Un labytinthe composé de 9 cases

Correction proposée:

Représentation du graphe

Proposez la matrice d’adjascence du graphe précédent.

Correction proposée:

1 2 3 4 5 6 7 8 9
1 V
2 V V
3 V
4 V V
5 V V
6 V V
7 V V
8 V V
9 V V

12.2 Algorithme de Dijkstra

En utilisant l’algorithme de Dijkstra, donnez l’arbre recouvrant pour le graphe présenté par la figure 12.4
depuis le sommet 1 qui permet d’obtenir tous les chemins les plus courts depuis ce sommet.
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1

2

4

43

3

5

5
3
5

6
7

6

2

711

8
8

9
4

2
10

2

5

4

7

FIGURE 12.4 – Un graphe valué positivement

Correction proposée:

1

2
4

35

4

3

53

62

7
11

8
8

94

102

12.3 Skynet d’après Codingame©

Un arbre recouvrant

Nous avons vu en cours que l’algorithme de Dijkstra permet d’obtenir un arbre a recouvrant depuis un
sommet s sur un graphe valué avec des nombres positifs tel que le chemin de a reliant s a tout sommet du
graphe est le plus court. Cet algorithme est le suivant :
fonction dijkstra (g : Graphe<Sommet,,ReelPositif>, s : Sommet) : Arbre<Sommet>, Dictionnaire<Sommet,
ReelPositif>

⌊précondition(s) sommetPresent(g,s)

Déclaration arbreRecouvrant : Arbre<Sommet>, cout : Dictionnaire<Sommet,ReelPositif>
l : Liste<Liste<Sommet>>, c : ReelPositif
sommetDeA, sommetAAjouter : Sommet

debut
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arbreRecouvrant← arbreInitial(s)
cout← dictionnaire()
ajouter(cout,s,0)
l← arcsEntreArbreEtGraphe(g,arbreRecouvrant)
tant que non estVide(l) faire

sommetDeA,sommetAAjouter,c← arcMinimal(g,l,cout)
ajouter(cout,

sommetAAjouter,
obtenirValeur(cout,sommetDeA)+c

)
ajouterCommeFils(arbreRecouvrant,sommetDeA,sommetAAjouter)
l← arcsEntreArbreEtGraphe(g,arbreRecouvrant)

fintantque
retourner arbreRecouvrant, cout

fin
Tel que :

— arbreInitial crée un arbre possédant uniquement le noeud s

— arcsEntreArbreEtGraphe permet d’obtenir la liste des arcs présents dans le graphe G, dont le
sommet source est présent dans l’arbre mais pas le sommet destination ;

— arcMinimal permet d’identifier l’arc (sommet source, sommet destination) dont le sommet destination
est le plus proche (au sens du dictionnaire de cout) des sommets de a ainsi que le coût supplémentaire
pour l’atteindre

— ajouterCommeFils permet d’ajouter un sommet dans l’arbre en spécifiant son père.

Signatures

Donnez les signatures des sous-programmes précédents.

Correction proposée:

— fonction arbreInitial (s : Sommet) : Arbre<Sommet>

— fonction arcsEntreArbreEtGraphe (g : Graphe<Sommet,ReelPositif>, a : Arbre<Sommet>) : Liste<LIste<Sommet>>

— fonction arcMinimal (g : Graphe, arcs : Liste<Liste<Sommet>>, cout : Dictionnaire<Sommet, Reel-
Positif>) : Sommet, Sommet, ReelPositif
⌊précondition(s) non estVide(arcs)

— procédure ajouterCommeFils (E/S a : Arbre<Sommet>, E sommetPere, sommetFils : Sommet)

Algorithme

Donnez l’algorithme de la fonction sommetsAccessiblesDepuisArbre (n’oubliez pas de décomposer
le problème si besoin).

Correction proposée:
Analyse :

— arcsEntreArbreEtGraphe : Graphe × Arbre<Sommet>→ Liste<Liste<Sommet>>

— sommetsDeLArbre : Arbre<Sommet>→ Liste<Sommet>
— estPresent : Liste<Sommet> × Sommet→ Booleen
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Conception préliminaire :

— fonction sommetsDeLArbre (a : Arbre<Sommet>) : Liste<Sommet>

— fonction estPresent (l : Liste<Sommet>, s : Sommet) : Booleen

Conception détaillée :
fonction sommetsDeLArbre (a : Arbre<Sommet>) : Liste<Sommet>

Déclaration res : Liste<Sommet>

debut
res← liste()
parcourir(a, res)
retourner temp

fin
procédure parcourir (E a : Arbre<Sommet>, E/S l : Liste<Sommet>)
debut

si non estVide(a) alors
inserer(temp,1,obtenirElement(a))
pour chaque f de obtenirFils(a)

parcourir(a, l)
finpour

finsi
fin
fonction estPresent (l : Liste<Sommet>, s : Sommet ) : Booleen

Déclaration i : Naturel

debut
i← 1
tant que i≤longueur(l) et obtenirElement(l,i)̸=s faire

i← i+1
fintantque
retourner i>longueur(l)

fin
fonction arcsEntreArbreEtGraphe (g : Graphe<Sommet,ReelPositif>, a : Arbre<Sommet>) : Liste<LIste<Sommet>>

Déclaration res : Liste<Liste<Sommet>>
arc :Liste<Sommet>
sommetsDeA : Liste<Sommet>

debut
res← liste()
sommetsDeA← sommetsDeLArbre(a)
pour chaque s1 de sommetsDeA

pour chaque s2 de obtenirSommetAdjascent(g,s1)
si non estPresent(sommetsDaA,s2) alors

arc← liste()
inserer(arc,1,s1)
inserer(arc,2,s2)
inserer(res,1,arc)

finsi
finpour

finpour
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retourner res
fin

12.3.1 Le chemin le plus court

Donnez l’algorithme de la fonction suivante qui permet d’obtenir le chemin (une liste de sommets) le plus
court permettant d’aller d’un sommet s1 à un sommet s2 d’un graphe valué avec des nombres positifs :

— fonction cheminPlusCourt (g :Graphe, s1,s2 : Sommet) : Liste<Sommet>

⌊précondition(s) sommetPresent(g,s1) et sommetPresent(g,s2)

Correction proposée:
fonction cheminPlusCourtR (a : Arbre<Sommet>, sCible : Sommet) : Liste<Sommet>

Déclaration chemin : Liste<Sommet>
fils : Sommet

debut
chemin← liste()
si estVide(a) alors

retourner chemin
sinon

si obtenirElement(a)=sCible alors
inserer(chemin,1,sCible)
retourner chemin

sinon
i← 1
tant que i≤longueur(obtenirFils(a)) et estVide(chemin) faire

chemin← cheminPlusCourtR(obtenirElement(obtenirFils(a),i),sCible)
si estVide(chemin) alors

i← i+1
finsi

fintantque
si non estVide(chemin) alors

inserer(chemin,1,obtenirElement(obtenirFils(a),i))
finsi
retourner chemin

finsi
finsi

fin
fonction cheminPlusCourt (g : Graphe, s1,s2 : Sommet) : Liste<Sommet>

⌊précondition(s) sommetPresent(g,s1) et sommetPresent(g,s2)

Déclaration a : Arbre<Sommet>
c : Dictionnaire<Sommet,ReelPositif>
res : Liste<Sommet>

debut
a,c← dijkstra(g,s1)
retourner cheminPlusCourtR(a,s2,res)

fin
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12.3.2 Skynet le virus

Le site Web www.codingame.com propose des exercices ludiques de programmation. L’un des exer-
cices, ≪ Skynet le virus ≫ est présenté de la façon suivante :

≪ Votre virus a créé une backdoor sur le réseau Skynet vous permettant d’envoyer de nouvelles instructions
au virus en temps réel. Vous décidez de passer à l’attaque active en empêchant Skynet de communiquer sur son
propre réseau interne. Le réseau Skynet est divisé en sous-réseaux. Sur chaque sous-réseau un agent Skynet a
pour tâche de transmettre de l’information en se déplaçant de noeud en noeud le long de liens et d’atteindre
une des passerelles qui mène vers un autre sous-réseau. Votre mission est de reprogrammer le virus pour qu’il
coupe les liens dans le but d’empêcher l’agent Skynet de sortir de son sous-réseau et ainsi d’informer le hub
central de la présence de notre virus. ≫

Bref, l’agent Skynet (S) est sur un graphe (par exemple celui de la figure 12.5 où les identifiants des sommets
ne sont pas indiqués) valué (avec la valeur 1 pour chaque arc) dont certains sommets sont des passerelles (P).
Le but du jeu est d’empécher l’agent skynet d’atteindre une des passerelles en supprimant le moins d’arcs du
graphe.

L’algorithme de ce jeu est proposé par la procédure skynet. L’ agentSkynet parcourt le graphe (grâce
à la fonction seDeplace) de sommet en sommet à chaque itération. Pour résoudre ce problème, il faut couper
un arc du graphe à chaque itération de façon à ce que l’agent Skynet ne puisse pas atteindre l’une des passerelles.
De plus il faut faire le moins de coupures possibles (le score est fonction de ce paramètre). Pour cela il suffit de
supprimer le premier arc du chemin le plus court entre l’agenSkynet et la plus proche passerelle.

Complétez l’algorithme de la procédure skynet (remplacer les . . . par une ou plusieurs instructions).
procédure skynet (E/S g : Graphe<Sommet>, E agentSkynet : Sommet, S agentSkynetAAtteindPasserelle :
Booleen)

Déclaration passerelles : Liste<Sommet>
s : Sommet
. . .

debut
passerelles← sommetsDesPasserelles(g)
tant que agentSkynetPeutAtteindreUnePasserelle(g,agentSkynet) et non estPresent(passerelles, agentSky-
net) faire

. . .
supprimerArc(g,agentSkynet,s)
agentSkynet← seDeplace(g, agentSkynet)

fintantque
agentSkynetAAtteindPasserelle← estPresent(agentSkynet,passerelles)

fin

Correction proposée:
procédure skynet (E/S g : Graphe<Sommet>, E agentSkynet : Sommet, S agentSkynetAAtteindPasserelle :
Booleen)

Déclaration passerelles : Liste<Sommet>
s1,s2,p : Sommet
chMin,temp : Liste<Sommet>
lmin : Naturel

debut
passerelles← sommetsDesPasserelles(g)
tant que agentSkynetPeutAtteindreUnSommet(g,agentSkynet) et non estPresent(passerelles, agentSkynet)
faire

chMin← cheminPlusCourt(g,agentSkynet,obtenirElement(passerelles,1))

www.codingame.com
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FIGURE 12.5 – Un sous réseau Skynet

lmin← longueur(chMin)
pour chaque p de passerelles

ch← cheminPlusCourt(g,agentSkynet,p)
si non estVide(ch) et longueur(ch)<lmin alors

lmin← longueur(ch)
chMin← ch

finsi
finpour
s← obtenirElement(ch,2)
supprimerArc(g,agentSkynet,s)
agentSkynet← seDeplace(g, agentSkynet)

fintantque
agentSkynetAAtteindPasserelle← estPresent(agentSkynet,passerelles)

fin



Chapitre 13

Programmation dynamique

Attendus d’apprentissages disciplinaires évalués

— AN004 : Comprendre et appliquer des consignes algorithmiques sur un exemple

— CD701 : Définir la programmation dynamique

— CD702 : Appliquer la programmation dynamique pour des cas simples

— CD801 : Concevoir des graphes (matrice d’adjacence, matrice d’incidence, liste d’adjacence)

13.1 L’algorithme de Floyd-Warshall
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FIGURE 13.1 – Un graphe orienté valué

L’algorithme de Floyd-Warshall est un algorithme qui permet de calculer la longueur du plus court chemin
entre tous les nœuds d’un graphe orienté valué positivement.

≪ L’algorithme repose sur la remarque suivante : si (a0, . . . , ai, . . . , ap) est un plus court chemin de a0 à ap
, alors (a0, ..., ai) est un plus court chemin de a0 à ai , et (ai, ..., ap) un plus court chemin de ai à ap . De plus,
comme les arêtes sont valuées positivement, tout chemin contenant un cycle est nécessairement plus long que
le même chemin sans le cycle, si bien qu’on peut se limiter à la recherche de plus courts chemins passant par
des sommets deux à deux distincts.

Floyd montre donc qu’il suffit de calculer la suite de matrices définies par :
83
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Mk
i,j = min(Mk−1

i,j ,Mk−1
i,k +Mk−1

k,j ). ≫ 1

tel que M0 est la matrice d’adjacence du graphe avec :
— les nœuds qui sont numérotés de 1 à n (et k varie de 1 à n) ;
— M0

i,i = 0 ;

— M0
i,j = +∞ s’il n’existe pas d’arc reliant i à j.

1. Donnez la matrice d’adjacence M0 du graphe proposé par la figure 13.1 (pour plus de clarté, vous pouvez
ne pas noter les +∞).

2. Donnez les matrices M de Floyd pour k variant de 1 à 6.
3. À partir de la matrice M6 donnez la longueur du plus court chemin reliant le nœud 2 au nœud 4.

Correction proposée:
1.

M0 =



1 2 3 4 5 6

1 0 4
2 3 0 6 7
3 0
4 0 8
5 5 3 0
6 1 6 0


2.

M1 =



1 2 3 4 5 6

1 0 4
2 3 0 6 7
3 0
4 0 8
5 5 3 0
6 1 6 0


M3 = M2 = M1

M4 =



1 2 3 4 5 6

1 0 4
2 3 0 6 7
3 0
4 0 8
5 3 3 0 11
6 1 1 6 0


M5 = M4

M6 =



1 2 3 4 5 6

1 0 5 5 10 4
2 3 0 6 8 13 7
3 0
4 0 14 8
5 3 3 0 11
6 1 1 6 0


3. Le longueur du chemin le plus court allant de 2 à 4 est donnée par M6

2,4 = 8

1. http://www.nimbustier.net/publications/djikstra/floyd.html

http://www.nimbustier.net/publications/djikstra/floyd.html
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13.2 La distance de Levenshtein

≪ La distance de Levenshtein est une distance mathématique donnant une mesure de la similarité entre deux
mots. Elle est égale au nombre minimal de lettres qu’il faut supprimer, insérer ou remplacer pour passer d’un
mot à l’autre.

On appelle distance de Levenshtein entre deux mots M et P le coût minimal pour aller de M à P en
effectuant les opérations élémentaires suivantes :

— substitution d’une lettre de M en une lettre de P ;

— ajout dans M d’une lettre de P ;

— suppression d’une lettre de M .

On associe ainsi à chacune de ces opérations un coût. Le coût est toujours égal à 1, sauf dans le cas d’une
substitution de lettres identiques, il vaut alors 0. ≫ (inspiré de Wikipédia).

Pour calculer cette distance on utilise un matrice m de taille |P |+1×|M |+1 (tel |s| représente la longueur
d’un mot s) indicée à partir de 0, tel que :

m0,j = j, j ∈ 0..|M |

mi,0 = i, i ∈ 0..|P |

mi,j = min(mi,j−1 + 1,mi−1,j + 1,mi−1,j−1 + 1Pi,Mj ), i ∈ 0..|P |, j ∈ 0..|M |

tel que 1Pi,Mj vaut 0 si Pi = Mj (la ième lettre de P est égale à la jème lettre de M), 1 sinon.
La distance de Levenshtein est alors égale à m|P |,|M ].

1. Remplissez la matrice suivante pour calculer la distance de Levenshtein entre les deux mots "voiture"
et "toile".

m =



v o i t u r e

t
o
i
l
e


Correction proposée:

m =



v o i t u r e

0 1 2 3 4 5 6 7
t 1 1 2 3 3 4 5 6
o 2 2 1 2 3 4 5 6
i 3 3 2 1 2 3 4 5
l 4 4 3 2 2 3 4 5
e 5 5 4 3 3 3 4 4


2. À quel paradigme de conception appartient cet algorithme? Justifiez.

Correction proposée:
C’est un algorithme de programmation dynamique car :

— c’est un algorithme du type “diviser pour régner” qui calcule tout d’abord les résultats de base pour
les assembler et ainsi calculer le résultat recherché : la valeur mi,j est la distance de Levenshtein
entre les i premières lettres du mot M et les j premières lettre du mot P .

— il utilise un tableau pour stocker des valeurs qui sont susceptibles d’être calculées plusieurs fois.
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3. Donnez l’algorithme de la fonction qui permet de calculer la distance de Levenshtein entre deux mots.
Correction proposée:

fonction cout (c1, c2 : Caractere) : Naturel
debut

si c1=c2 alors
retourner 0

finsi
retourner 1

fin
fonction distanceLevenhstein (mot1, mot2 : Chaine de caracteres) : Naturel
⌊précondition(s) longeur(mot1)≤MAX et longueur(mot2)≤MAX

Déclaration m : Tableau[0..MAX][0..MAX] de Naturel

debut
pour i←0 à longueur(mot1) faire

m[i,0]← i
finpour
pour j←0 à longueur(mot2) faire

m[0,j]← j
finpour
pour i←1 à longueur(mot1 faire

pour j←1 à longueur(mot2) faire
m[i,j] ← min3(m[i,j-1]+1, m[i-1,j]+1, m[i-1,j-1] + cout(iemeCaractere(mot1,i), iemeCarac-
tere(mot2,j)))

finpour
finpour
retourner m[longueur(mot1), longueur(mot2)]

fin
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