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Formulation

Unconstrained optimization

Elements of the problem
@ 0 € RY : vector of unknown real parameters
e J:R? = R : the function to be minimized.

@ Assumption: J is differentiable all over its domain
domJ = {0 € R?| J(0) < oo}

Problem formulation

(P) i J(6)
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Formulation

Unconstrained optimization

Examples .

1
Jj(0) = Ee)TP(9+qT¢9+r

with P a positive definite matrix

. 0
J(0) = cos(91—192)+sm(6?1+92)_+_z1
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Optimality conditions

Different solutions

Global solution

0" is said to be the global minimum solution of the problem if
J(6*) < J(B), VO € domJ

Local solution

0 is a local minimum solution of problem (P) if it holds
J(0) < J(6), YO € domJ such that || — 0| <€, ¢>0

[llustration

J(6) = cos(6y — 02) + sin(6y + 02) + G J
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Optimality conditions

@ How do we assess a solution to the problem?
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Optimality conditions

First order necessary condition

Theorem [First order condition]

Let J:RY — R be a differential function on its domain. A vector g is a

(local or global) solution of the problem (P), if it necessarily satisfies the
condition VJ(6g) = 0.

Vocabulary

@ Any vector 8 that verifies VJ(8y) = 0 is called a stationary point or critical
point

@ VJ(0) € RY is the gradient vector of J at .

@ The gradient is the unique vector such that the directional derivative can be
written as:

i J(0+th) — J(6)

t—0 t

=VJ@O)"h, heR? teR
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Optimality conditions

Example of a first order optimality condition

o J(6) = 0% + 0% — 46,0,

3 _
o Gradient VJ(6) = ( 425 +4f;3>
—46, 5

@ Stationary points that verify VJ(0) = 0.

@ Three solutions 8™ = (0) 0 — G

Remarks

e 0@ and 6P are local minimal but not ()

@ every stationary point can be deemed a local extremum

We need another optimality condition

How to ensure that a stationary point is a minimum solution?
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Optimality conditions

Hessian matrix

Twice differential function

J:RY — R is said to be a twice differentiable function on its domain
domJ if, at every point 0 €, there exists a unique symmetric matrix
H(68) € R9*9 called Hessian matrix such that

J(O@+h)=J(0)+VI(O) "h+hTH(O)h + ||h|%e(h).
e(h) is a continuous function at 0 with limy_ge(h) =0

@ H(0) is the second derivative matrix

a2J 2 a2J
691891 691692 aglagd
H(0) = : : .. :
e oL o L B
89d891 89d852 89d89d

e H(0) =V, (VyJ(0)) is the Jacobian of the gradient function
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Optimality conditions

Examples

Example 1

@ Objective function
J(8) = 6% + 0% — 4610,

o Gradient

. 49% — 46>
VJ(H) a (—491 + 49%)

@ Hessian matrix

1202 —4
H(O) = (—41 1295)
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Exemple 2

@ Quadratic objective function
JO)=10"PO+q"0+r

@ Directional derivative
D(h,6) = lim:_q JU’LB—J(Q)

D(h,0) = (P8 +q)"h
o Gradient VJ(0) = PO +q

@ Hessian matrix H(8) = P

Descent methods 10/27



Optimality conditions

Second order optimality condition

Theorem [Second order optimality condition]

Let J:RY — R be a twice differentiable function on its domain. If 8 is a
minimum of J, then VJ(68o) = 0 and H(60y) is a positive definite matrix.

v

Remarks
@ H is positive definite if and only if all its eigenvalues are positive
@ H is negative definite if and only if all its eigenvalues are negative

@ For 6 € R, this condition means that the gradient of J at the minimum is
null, J/(#) = 0 and its second derivative is positive i.e. J”(6) > 0

If at a stationary point 8, H(0y)) is negative definite, 8y is a local
maximum of J
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Optimality conditions

[llustration of the second order optimality condition

o J(0) = 04 + 0% — 46,0,

3 _
o Gradient : VJ(0) = <401 40> )

—40; + 49%

@ Stationary points : o) = <8> 6 =

2

ted
=
. . 1202 —4
@ Hessian matrix H(0) = ( 4 12%)
o) 02 16
Hesci 0 —4 12 —4 12 -4
essian —4 0 —4 12 —4 12
Eigenvalues 4 —4 8,16 8,16
Type of solution | Saddle point | Minimum Minimum
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Optimality conditions

Necessary and sufficient optimality condition

Theorem [2nd order sufficient condition |

Assume the hessian matrix H(8o) of J(0) at 8 exists and is positive
definite. Assume also the gradient VJ(6o) = 0. Then 0y is a (local or
global) minimum of problem (P).

Theorem [Sufficient and necessary optimality condition]

Let J be a convex function. Every local solution 8 is a global solution 6*.

Recall

A function J : RY — R is convex if it verifies

J(@@+ (1 —-a)z) <aJO)+(1-a)d(z), VO,zedomJ, 0<a<l

o
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How to find the solution(s)?

@ We have seen how to assess a solution to the problem

@ A question to be addressed now is how to compute a solution?
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Descent algorithms

Principle of descent algorithms

Direction of descent

Let the function J : RY — R. The vector h € R? is called a descent
direction in @ if there exists o« > 0 such that J(0 + ah) < J(8)

Principle of descent methods
@ Start from an initial point 69
@ Design a sequence of points {64} with 041 = 04 + akhy

@ Ensure that the sequence {6} converges to a stationary point 6

@ hy: direction of descent

@ «y: step size
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Descent algorithms

General approach

General algorithm
1: Let k = 0, initialize 0,
2: repeat
3:  Find a descent direction h, € R?

4. Line search: find a step size avx > 0 in the direction hy such that
J(O + akhy) decreases "enough"

5. Update: 041 < 0k + arhg and k <+ k+1

until [VJ(0,)| < €

=)

@ The methods of descent differ by the choice of:
e h: gradient algorithm, Newton, Quasi-Newton algorithm

e «: backtracking. ..
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Mainlee el
Gradient Algorithm

Theorem [descent direction and opposite direction of gradient]

Let J(6) be a differential function. The directionh = —VJ(0) € R is a
descent direction.

Proof.

J being differentiable, for any t > 0 we have

J(6 + th) = J(0) + tVJ(0) "h + t||h|le(th). Setting h = —VJ(0), we get

J(6 + th) — J(8) = —t||VJ(0)|? + t||h|le(th). For t small enough e(th) — 0 and
so J(0 + th) — J(0) = —t||[VJ(0)||? < 0. It is then a descent direction. O

Characteristics of the gradient algorithm
@ Choice of the descent direction at 0y: hy = =V J(6y)
o Complexity of the update: Ox11 < Ok — ' VJ(Og) costs O(d)
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Descent algorithms Main methods of descent

Newton algorithm

@ 2nd order approximation of J at
1
J(@+h) ~ J(B) + VJI(O) h+ EhTH(ek)h

with H(6y) the positive definite Hessian matrix
@ The direction h, which minimizes this approximation is obtained by

VIJO+h)=0 = he=—H(0,)"1VJO))

Features
@ Descent direction at Oy: hy = —H(0,) 1V J(0y)
o Complexity of the update: 81 + 0y — a H(0,)~1V(0)) costs
O(d®) flops
e H(6y) is not always guaranteed to be positive definite matrix. Hence
we cannot always ensure that hy is a direction of descent
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DEEIEN A I di [y Main methods of descent

lllustration of gradient and Newton methods

Local approximation of the two methodSJ

in 1D
100
—J
8ok —— Approxim. de J Meth. Gradient
—— Approxim. de J Meth. Newton

Directions of descent in 2D
2

60

—_

-201
Tangente en 0,
-40 0y
~4 -2 0 2 4
0
1t
-2
-2
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Descent algorithms

Quasi-Newton method

Main features
@ Descent direction at 8;: h, = —B(0,)"1VJ(0y)
@ B(8y) is an positive definite approximation of the Hessian matrix

o Complexity of the update: most of the times O(d?)
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Research of the step
Line search

Assume the direction of descent hy at 6 is fixed. We aim to find the step
size ax > 0 in the direction hy such that the function J(0x + axhy)
decreases enough (compared to J(6))

Several options

o Fixed step size: use a fixed value o > 0 at each iteration k
011 < Ok + ahy
e Optimal step size o

Ori1 < Ok + arhy with o) =arg mig J(Ok + ahy)
o>

@ Variable step size: the choice «ay is adapted to the current iteration

0k+1 — Bk + akhk
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EEEN AR IO Research of the step

Line search

Pros and cons
o Fixed step size strategy: often not very effective
@ Optimal step size: can be costly in calculation time
@ Variable step: most commonly used approach

o The step is often imprecise
o A trade-off between computation cost and decrease of J
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EEEN AR IO Research of the step

Variable step sizeh
Armijo’s rule

Determine the step size ax in order to have a sufficient decrease of J i.e.

J(Ok + akh) < J(6k) + cakVJ(Ok)Thk

@ Usually c is chosen in the range [107°,107!]

@ Having hy the direction of descent, we have VJ(8x) "hx < 0, which ensures
the decrease of J

Backtracking

1: Fix an initial step @, choose 0 < p < 1, a + @ Choice of the initial step

2: repeat @ Newton method:

3 a< pa a=1

4: until J(0) + ah) > J(0x) + caVJ(0,) Thy ° §rid'ey(tekr;15}(gg§ii)
a=2 VJ(6,) Thy

Interpretation: as long as J does not decrease, we

decrease the value of the step size
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[BELNIAEICIn I Summary

Summary of descent methods

General algorithm

1: Initialize 04
. repeat

Find direction of descent h, € R

Update: 6411 < Ok + axhy
: until convergence

2
3
4: Line search: find the step ax > 0
5
6

Method Direction of descent h | Complexity | Convergence
Gradient -V J(0) O(d) linear
Quasi-Newton —B(6)"1VJ(0) O(d?) superlinear
Newton —H(0)"1VJ(6) o(d®) quadratic

@ Step size computation: backtracking (common) or optimal step size

@ Complexity of each method: depends on the complexity of calculating h, the

search for o, and the number of iterations performed until convergence
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lllustration of descent methods

Gradient method

J along the iterations

Evolution of the iterates
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lllustration of descent methods

Newton method

J along the iterations

S
o

Itérations k

@ At each iteration we considered
the matrix H(0) + Al instead of
H to guarantee the positive
definite property of Hessian
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lllustration of descent methods

Conclusion

@ Unconstrained optimization of smooth objective function

o Characterization of the solution(s) requires checking the optimality
conditions

Computation of a solution using descent methods

o Gradient descent method
o Newton method

Not covered in this lecture:
o Convergence analysis of the studied algorithms

e Non-smooth optimization
o Gradient-free optimzation
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