
Advanced Human Machine Interactions

Introduction to
multi-agent systems

and autonomous agents
Alexandre Pauchet

INSA Rouen – Département ASI
BO.B.RC.18, alexandre.pauchet@insa-rouen.fr

2/71

Introduction

The field of Multi-Agent Systems
(MAS) appeared in the 80’s, thanks
to the fusion of several disciplines

It is not (only)
a language
standards
an architecture
a method...

…but a group of features and characteristics
allowing the development of systems with
some properties (distributed, adaptive,
flexible, ‘smart’, ...)

In an effort to follow modern IT evolution...

3/71

Systems and communication

Large scale systems that must adapt to dynamic environments,
interacting with humans on a regular basis.

Internet web

Cloud computing
Connected objects
Ubiquitous/pervasive computing
Internet of things

4/71

Artificial Intelligence

Statistical approach
● Formal neural nets
● Multi-layer perceptron

Symbolic approach
● Turing test, ELIZA
● Lisp, Prolog, …
● Expert systems (Mycin, ...)

Rise of distributed AI and collective intelligence to
solve more and more complex problems, subject to

uncertainties and incomplete knowledge

5/71

What is an agent? (according to Sycara)

An agent is "a software system whose main features are
its situated nature, autonomy, adaptativeness and
sociability."
● Situated nature : sensory input => actions modifying

the environment
● Autonomy : controls its actions and its internal state
● Adaptability : allows agents to

– React in a flexible way
– Take initiatives towards a goal
– Learn

● Sociability : interaction with other agents

6/71

MAS definition (according to Ferber)

 A MAS is made up of:
● an environment E
● a set of situated objects O (a position into E is associated

with them)
● a set of agents A (A included into O ; they are active

compared to other passive objects of O)
● a set of relations R uniting objects
● a set of operations Op allowing agents A to perceive and

manipulate objects in O
● operators representing the application of those operations

and the world reaction to the resulting modification attempts
(called the universe laws)

7/71

Computer science, AI and MAS

A few definitions
● A software agent is computer system capable of acting

autonomously to achieve its own goal
● A multi-agent system is made up of software agents interacting

in a physical or virtual environment
● An heterogeneous MAS (or a mixed community) is a system

made up of software agents interacting with human agents.

Application fields
● Distributed solving of problems
● Modelling, individual-centered simulation
● Distributed software applications
● Human-Machine interaction and communication within mixed

communities

8/71

Multi-agent application examples

9/71

Graphical simulation

Example: MASSIVE system
● Large scale simulation
● Autonomous decision making
● Local/limited perceptions or actions
● Interactions thanks to message sequences
● Behaviour modelling
● Heterogeneity of agents
● No overall control, but emergence of global behaviour

during realistic simulations

10/71

Peer-to-peer networks

● Aim: giving access to resources
located on the network nodes

● Working principle: distributed
indexing or discovery
algorithms, and/or repository
necessitating a collaborative
activity of agents/nodes

● Multi-agent feature: protocols
implemented by interaction
rules, open systems,
autonomous agents (sometimes
heterogeneous)

11/71

Swarm robotics

● Aim: coordinate a mobile robots fleet
● Working principle: local decision-making contributing

to an overall goal achievement
● Multi-agent feature: locally noised and limited

perception, located environment, distributed planning

Robocup Robocup rescue

12/71

Fields of development
for a multi-agent application

13/71

Vowels breakdown

A MAS is made up of [Demazeau, 95]
● Agents (2)
● Environements (1)
● Interactions (3)
● Organizations (4)

14/71

AEIO 1/4: Environment

Physical environment
● Modelling of the world states and their dynamics
● Definition of action and perception primitives
● Especially present in embedded systems (mobile robotics,

intelligent ambiance)

Situated environments
● Determine an agent position along with perception and

action constraints
● Mostly used in simulation

15/71

AEIO 2.1/4: Agent architectures
Reactive agents

● Simple architecture implementing a behaviour responding
to events (stimuli)

● No environment representation
● Indirect communications (via the environment)
● No events or behaviours history
● Intelligence is embedded into the MAS organisation and

appears by emergence

Environment

Agent

perceives acts

Difficulties: MAS + settings

16/71

Reactive control cycle

Data:
● Rules “condition => action”
● Set of percepts

while (true) {
percepts := see();
state := interpret(percepts);
rule := match(state,rules);
execute(rule[action]);

}

17/71

Example: Subsomption architecture [Brooks, 96]

● Each layer interprets its inputs and creates a
response

● Possibility to delete inputs and inhibit outputs

18/71

AEIO 2.2/4: Agent architectures
Cognitive agents

● Agents = intelligent entities, able to solve problems by
themselves

● Intentionality: agents have goals and explicit plans
allowing them to reach their goals

● MAS tries to organise the cooperation of traditional expert
systems, through communications

● Intelligence is within the agents

Difficulties: agent architecture + communications
● AHMI: Human - cognitive agent interaction

19/71

Cognitive agents

● Action choice is subject to deliberation

● Explicit representation of the environment, the agents’ goals
and their abilities

● An history can be used to take decision, learn or plan a
sequence of actions

Environment

Agent

perceives acts

debate

states

20/71

Deliberative control system

Data

● Set of states

● Set of percepts

● Set of actions

states := initialise_state();
while (true) {

percepts := see();
states := update_states(percepts)
action := deliberate(states);
execute(action);

}

21/71

Indirect interaction
● Mainly for reactive agents
● Communication between agents by actions/perceptions

on the environment
● Example: pheromone deposits

AEIO 3/4: Interactions

Direct interaction
● Mainly for cognitive agents
● Sending/reception of structured messages
● Sequencing into interaction protocols
● Interaction is sometimes considered as an action

22/71

AEIO 4/4: Organisations

Top-down approach
● Formal definition, explicit of an organisation
● Prescriptive or restrictive use for agents
● MAS readapts via re-organisation

Bottom-up approach
● Implicit organisation resulting from local agents’ behaviour
● Emergence of some organisation
● MAS readapts via auto-organisation

23/71

Auto-organisation

Ant colony Peer-to-peer network
regulation [Grizard, 06]

https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms

24/71

To sum up, at agent level

A software agent has several features
● It is autonomous
● It has its own decision ability (pro-activity)
● It interacts with other agents
● It can take action on and perceive its

environment

25/71

To sum up, at MAS level

A multi-agent system
● is an open system
● that works in a decentralised manner
● is a compromise between control/regulation

and emergence

Its properties allow to develop flexible large scale
systems

A responsive architecture:
Eco Problem Solving (EPS)

INSA - ASI AHMI : MAS 27/71

Problem solving (1/5)
Formalisation

De�nition

A problem is de�ned by :

an initial state,

a goal (�nal state),

a set of operators allowing to pass from one state to another.

=⇒ To solve a problem : give a sequence of operators allowing to pass
from the initial state to the �nal one.

Representation

The states of the problem are represented by an oriented graph whose
vertices are states.
There is an edge between nodes u and v i� there is an operator that
turns u into v .

INSA - ASI AHMI : MAS 28/71

Problem solving (2/5)
Examples of addressed problems

Exemples

Proving theorems, solving equations

Cube world, tower of Hanoi

Eight queens puzzle

River crossing puzzle (wolf, goat and cabbage problem, Seven Bridges of
Koenigsberg)

Timetables

Path search in a maze

Magic squares, sudoku, crosswords

Travelling salesman problem

Remarque

Most of "real" problems can be identi�ed as one of the above
formalisation.

INSA - ASI AHMI : MAS 29/71

Problem solving (3/5)
Exact solving

Principle

Calculation of all possible paths going from the initial state to the
�nal one.

Exponential computational complexity
⇒ Combinatorial explosion (memory and/or time).

Example : chess

State space : all authorized con�gurations of the board

Initial state : initial con�guration of chess

Final state : all con�gurations of the board implying checkmate

Rules such as : "if(white pawn is in square(i,2), and square(i,3) is

empty, and square(i,4) is empty) then move white pawn from

square(i,2) to square(i,4)"

INSA - ASI AHMI : MAS 30/71

Problem solving (4/5)
Heuristic methods

Principle

Localized search view and stop after a certain amount of time.
⇒ Approximation of solution
⇒ Admissible quality solution, obtained in minimal time

Exemples

Simulated annealing,

Tabu search

Evolutionary algorithms (or genetic algorithms)

Multi-Agent systems (eco-problem solving)

INSA - ASI AHMI : MAS 31/71

Problem solving (5/5)
Problem solving and Human-Machine Interactions

Principle

Problem solving

Dynamic

human intervention,
open or evolving environment

with human interaction

cooperation,
collaboration,
competition

Exemple

Timetable bargaining

Games

INSA - ASI AHMI : MAS 32/71

Eco-problem solving (1/5)
Principles

Used in problem solving

Based on a set of reactive agents sharing the same behaviour, called
eco-agents

As for any MAS, decentralised solving, and emergence of a
large-scale behaviour

Also interesting for dynamic problem solving

Goal : reach a stable state (the problem's solution)

INSA - ASI AHMI : MAS 33/71

Eco-problem solving (2/5)
Eco-agents

Their behaviour can be compared to a sequence of perception/action
instructions

Localised environment perception : network of dependencies made up
of neighbour agents

Each agent has a goal : satisfaction

An agent is dissatis�ed when obstructed by other agents

If an agent is obstructed, it can attack another one

An attacked agent is dissatis�ed and can �ee

Representation with �nite-state automata

INSA - ASI AHMI : MAS 34/71

Eco-problem solving (3/5)
Eco-agents architecture

4 internal states

S Satisfaction (�nal state)
SS Seeking satisfaction (initial state)
SE Seeking escape
E Escape state

Perceptions

A/A attacked/not attacked by an other agent
G/G obstructed/not obstructed by an other agent

Actions

FS Do satisfaction (action achieving its goal)
AT Attack an agent
FF Flee

INSA - ASI AHMI : MAS 35/71

Eco-solving problem (4/5)
Eco-agents behaviour automaton

INSA - ASI AHMI : MAS 36/71

Eco-problem solving (5/5)
Solving eco-problems

An eco-problem is de�ned as

A set of agents, featuring a goal and a behaviour (automaton +
basic actions depending upon application)
An initial con�guration, agents set into their initial state
An ending criterion (most of the time : all agents are satis�ed)

Solving a problem through eco-problem solving
1 Identify the di�erent types of eco-agents
2 Identify the satisfaction conditions of each eco-agent
3 Associate a structure describing eco-agents
4 Specify methods doEscape, doSatisfaction and Attack(X)

INSA - ASI AHMI : MAS 37/71

Example : cube world
Problem description

C

B

A
?

Initial
state

From an initial state (a set of cubes on the table), �nd a sequence of
actions to execute in order to reach a �nal state (a speci�c con�guration
of the cubes)

INSA - ASI AHMI : MAS 38/71

Example : cubes world
Solving through eco-problem solving

2 types of eco-agents : the table and the cubes

Final state : cube A would be satis�ed if on the table, cube B if on
top of cube A, cube C if on top of cube B
{A.on(Table), B.on(A), C.on(B)}

To a cube, �eeing consists in being put on the table

INSA - ASI AHMI : MAS 39/71

Example : cubes world
Table eco-agent

Attributes

Methods

Method satisfied?():boolean {

return(True)

}

INSA - ASI AHMI : MAS 40/71

Example : cubes world
Cube eco-agent

Attributes

over: Cube

under: EcoAgent (Cube or Table)

goal: EcoAgent (Cube or Table)

Methods

Method doSatisfaction() {

this.goal.over := this

this.under.over := null

this.under := goal

}

Method doEscape(p: EcoAgent) {

this.under.over := null

this.under := p

}

...

INSA - ASI AHMI : MAS 41/71

Example : cubes world
Cube eco-agent

...

Method satisfied?(): boolean {

if this.under = this.goal then return(True)

else return(False)

}

Method findPlaceToFlee() {

return(Table)

}

Method obstructorsFlee() {

if this.over <> null then // return the obstructors list

return(this.over)

else

return(null) // else nothing

}

...

INSA - ASI AHMI : MAS 42/71

Example : cubes world
Cube eco-agent

...

Method obstructorsSatisfaction() {

EcoAgent r := null

if this.over <> null then

r := this.over

else if this.goal.over <> null then

r := this.goal.over

return(r)

}

INSA - ASI AHMI : MAS 43/71

Interaction with eco-agents

Heterogeneous MAS
Reactive MAS, easily con�gurable
Mixed community : human / arti�cial agents
Indirect interactions
Seeking stable state, human disturbance

Eco-problem solving through heterogeneous MAS
Features identical to a heterogeneous MAS made up of eco-agents and
humans
Agents and humans cooperate to solve a problem

INSA - ASI AHMI : MAS 44/71

References

Links

Link to lesson by C. Bertelle

Link A. Drogoul

Books and articles

J. Ferber, "Les Systèmes Multi-Agents : vers une intelligence collective",
InterEditions, 1995

K.P. Sycara, "The many faces of agents", AI Magazine, 19(2), pp. 11-12, 1998

Cognitive architecture examples

28/71

Problem to solve: cube world
States description with predicates

Example:
HANDEMPTY, CLEAR(A), ON(A,B), ON(B,C), ONTABLE(C)

C

B

A

● Robotic hand status
HANDEMPTY, HOLDING(x)

● State of a cube
Above: CLEAR(x)

Below: ONTABLE(x), ON(x,y)

29/71

Cube world operations

● pickup(x)
PRE & DEL: ONTABLE(x), CLEAR(x), HANDEMPTY

ADD: HOLDING(x)

● putdown(x)
PRE & DEL: HOLDING(x)

ADD: ONTABLE(x), CLEAR(x), HANDEMPTY

● stack(x,y)
PRE & DEL: HOLDING(x), CLEAR(y)

ADD: HANDEMPTY, ON(x,y), CLEAR(x)

● unstack(x,y)
PRE & DEL: HANDEMPTY, ON(x,y), CLEAR(x)

ADD: HOLDING(x), CLEAR(y)

30/71

Initial and final states

Possible sequence:
unstack(C,A), putdown(C), pickup(B), stack(B,C), pickup(A), stack(A,B)

A

C

B C

B

A?

31/71

State graph

Planning

33/71

Planning

Determine a sequence of actions to perform in
order to reach a certain goal

Environment

States Operations

Goals

Sequence of operations

Modelling

Planning

Running

34/71

Planning algorithm

If success(Initial state)
Return (Initial state)

Else
Scons = {Initial state}
Stoex = {Initial state}
While Stoex ≠ Ø do

state = chose(Stoex)
If (next_state = new_successor(state) ≠ Ø) then

If next_state Є Scons then
If success(next_state) then

Return (next_state)
EnfIf
Scons = Scons ᴗ next_state
Stoex = Stoex ᴗ next_state

EndIf
Else

Stoex = Stoex – {state}
EndIf

EndWhile
Return (failure)

EndIf

Solution searching strategy
is implemented here

35/71

Forward linkage

Principle: begin from the initial state and explore the
states produced by applying successive operations

● Complete approach that ends if the world models
are finite

● Depth-first or breadth-first search
● Complexity proportional to the number of state

models

36/71

Example

● Forward linkage

● Selection of the oldest state with
the less successors

1) {10} {11, 21}⇒ {11, 21}
● CLEAR(B) & ON(C,A) & CLEAR(C) &

ONTABLE(A) & ONTABLE(B) & HANDEMPTY

● Candidates : pickup(B), unstack(C,A)

2) {10, 11} {12, 21}⇒ {11, 21}
● ON(C,A) & CLEAR(C) & HOLDING(B) &

ONTABLE(A)

● Candidates : putdown(B), stack(B,C)

3) {10, 11, 12} (failure) {21}⇒ {11, 21}

4) {10, 21} {7, 23}⇒ {11, 21}

 ...

1

2

11

3

1

5

14

6

1

2

11

3

1

8

17

9

1

2

11

3

1

14

113

15

1

11

110

12

1

18

116

19

2120 22

23

37/71

Backward linkage

Principle: begin from the goal to find the initial state

The STRIPS planner generates intermediate
solutions with 2 operators

● Decomposition: if the solution under
consideration is composed, propose solutions in
the appropriate order

● Regression: if the solution considered is
elementary, choose an action that leads to it

38/71

Example

● CLEAR(A) & ON(A,B) & ON(B,C) & ONTABLE(C) & HANDEMPTY

– Candidates : stack(A,B)
● ON(B,C) & CLEAR(B) & HOLDING(A) & ONTABLE(C)

– Candidates : pickup(A), unstack(A,B)
● CLEAR(A) & ON(B,C) & CLEAR(B) & ONTABLE(A) & ONTABLE(C)

& HANDEMPTY

– Candidates : stack(B,C), putdown(A)
● CLEAR(A) & CLEAR(C) & HOLDING(B) & ONTABLE(A) &

ONTABLE(C)

– Candidates : pickup(B), unstack(B,A), unstack(B,C)
● ...

Example of cognitive agents architecture
allowing planning: BDI model

40/71

BDI model

Based on a cognitive model of intentionality
[Georgeff, 83] [Bratman, 90]

A BDI model is made up of
● A set of Beliefs upon itself and the world (modalities or

predicates)
● A set of potentially conflictual Desires
● A set of consistent and not conflictual Intentions
● Reasoning mechanisms to update beliefs, chose

desires and generate intentions

41/71

BDI model implementations

● Definition of an architecture based upon this model
of reasoning (e.g.: PRS [Georgeff, 87])

● Formalisation in modal logic (e.g.: [Rao & Georgeff,
93])

● Agent programming languages (e.g.: Jason)

42/71

Procedural Reasoning System
[Georgeff, 87]

43/71

BDI formal model [Rao & Georgeff, 93]

Preamble
● An agent perceives the current situation as a world

state
● A world state is made up of true, false or unknown

facts represented by predicates (e.g.:
onTable(cube_A), not_clear(cube_B), ...)

● The representation of the world can be made in the
hypothesis of a closed world or an open world

44/71

BDI formal model [Rao & Georgeff, 93]

BDI model formulas
● A state formula s is

– A proposition (a world state)
– A conjunction or negation of state formulas (s1 AND s2,

NOT s3)
– BEL(s), DESIRE(s), INTEND(s)

● A path formula p is

– A state formula
– A conjunction or negation of path formulas
– F p, G p, … timed operators (p will be true at least once,

p will always be true, ...)

45/71

BDI formal model [Rao & Georgeff, 93]

BDI predicates examples
● BEL(onTable(cube_A))
● BEL(NOT onTable(cube_A))
● INTEND(onTable(cube_B))
● BEL(does(take(?X)) AND onTable(?X) → NOT

onTable(?X))
● INTEND(clear(cube_B))

46/71

How it works

BDI agent

Environment

Perception

BEL

Plan libraryDES

INTEND

Actions runner

While (stop condition)

1. Get new perceptions

2. Update beliefs

3. Update the desire
stack depending on
"activatable" plans

4. Update the
intention stack

5. Run the first
intention of the
intention stack

47/71

Plans library

● Plan library encodes a set of "activatable" sub-
plans depending on beliefs

● A desire will be satisfied thanks to a set of
intentions encoded by sub-plans

Planning is pre-wired !

Example: sub-plan « Paint a picture »

Pre: BEL(picture-not-painted)

Post: DES(painted-picture)

Plan: INTEND(take-brush) AND INTEND(soak-
brush) ...

48/71

Multi-agent programming language

BDI programming language example: Jason

http://jason.sourceforge.net/Jason/Jason.html

● Developed in Java by R. Bordini and J. F. Hubner
● Inspired by AgentSpeak formalism

Basic concepts
● Goals: !goal
● Internal actions: .action(...)
● States addition (+) and substraction (-) operators
● Reaction plan to an event: event <- actions

49/71

Simple example of Jason code

// Agent tom in project greeting.mas2j

!start.

+!start : true <- .send(bob,tell,hello).

+hello[source(A)]

 <- .print("I receive an hello from ",A);

 .send(A,tell,hello).

Communication between agents
(humans or software agents)

51/71

Communicating is taking action!

● Speech act theory (Austin, Searle), computational
formalisation (Searle, Vanderveken)
– Locutionary dimension

● production of signs, creation of the communication action

– Illocutionary dimension
● intention expressed by the speaker

– Perlocutionary dimension
● effect on the speaker

● Dialogue acts (Bunt) distinguish between:
– Form of the statement (e.g. : « Does it rain ? »)
– Communicative function
– Semantic content

BDI mental states can formalise those dimensions

52/71

Examples

● Statement « Does it rain ? » associates communicative
function « closed question » and proposal « it
rains ». They add statement « Does it rain ? » to the
linguistic context and add to the listener’s beliefs that the
speaker wants to know if proposal « it rains » is true.

Act Example Meaning

! !
x
p Agent x confirms p.

? ?
x
p Agent x asked question p.

!? !?
x
p Agent x confirms its ignorance about p.

$ $
x

Agent x has nothing to say anymore (dialogue ends).

53/71

FIPA-ACL messages

Agent Communication Language

54/71

FIPA protocol

FIPA Request Interaction Protocol

55/71

FIPA-ACL examples

<i, inform(k,p)>

FP : Bip ‸ ¬Bi(Bkp ˬ Ukp)

RE : Bkp

Ex : Agent i informs agent j that (it is true that) it is raining today.

(inform

 :sender (agent-identifier :name i)

 :receiver (set (agent-identifier :name j))

 :content

 "weather (today, raining)"

 :language Prolog)

<i,query-if(j,X)>

FP : ¬BiX ‸ ¬Bi¬X ‸ ¬UiX ‸ ¬Ui¬X

RE : Done(<j,inform(i,X)> ˬ <j,inform(i,¬X)>)

56/71

To go further

Main conferences
● AAMAS (Autonomous Agents and Multi-Agent Systems)
● IAT (Intelligent Agent Technology)
● JFSMA (French-speaking days about Multi-Agents

Systems)

Lessons
● J.P. Sansonnet (http://perso.limsi.fr/jps/)
● R. Courdier (http://personnel.univ-reunion.fr/courdier)

http://perso.limsi.fr/jps/
http://personnel.univ-reunion.fr/courdier

